首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   0篇
测绘学   7篇
大气科学   14篇
地球物理   17篇
地质学   38篇
海洋学   1篇
天文学   29篇
自然地理   2篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2019年   1篇
  2018年   10篇
  2017年   7篇
  2016年   7篇
  2015年   1篇
  2014年   7篇
  2013年   11篇
  2012年   9篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1977年   2篇
  1975年   2篇
  1971年   3篇
  1970年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
41.
The tannery industry influences the gross domestic product/economic activity of any country, but the uncontrolled release of tannery effluents causes environmental degradation and increases health risks to human. The reason for the toxicity of tannery effluents is the presence of high concentrations of organic and inorganic chemicals used in the production of leather goods. Untreated or partially treated effluents discharged into surface water results in an increase in both chemical and biological oxygen demand as well as in an increase in the levels of total suspended solids, dissolved solids, and toxic metals in environmental bodies, especially in soil, water bodies, and water sediments. Various treatment techniques, such as physicochemical, biological, and advanced oxidation methods, which include chemical precipitation, electrocoagulation, aerobic or anaerobic treatment, wetland construction, and Fenton, electro-Fenton, and photo-Fenton processes are also described. This review also discusses the technical appropriateness and economic feasibility of reducing the effluent pollution load and solid waste emanating from the tannery industry. Considering the enhanced health risks in the tannery waste treatment and management regime, some green and advanced technologies should be explored. A sustainable green technology that avoids the use of toxic chemicals in the tanning process is seen well for ecological health.  相似文献   
42.
Atmospheric surface layer meteorological observations obtained from 20-m-high meteorological tower at Mangalore, situated along the west coast of India are used to estimate the surface layer scaling parameters of roughness length (z o) and drag coefficient (C D), surface layer fluxes of sensible heat and momentum. These parameters are computed using the simple flux–profile relationships under the framework of Monin–Obukhov (M–O) similarity theory. The estimated values of z o are higher (1.35–1.54 m) than the values reported in the literature (>0.4–0.9 m) probably due to the undulating topography surrounding the location. The magnitude of C D is high for low wind speed (<1.5 m s?1) and found to be in the range 0.005–0.03. The variations of sensible heat fluxes (SHF) and momentum fluxes are also discussed. Relatively high fluxes of heat and momentum are observed during typical days on 26–27 February 2004 and 10–11 April 2004 due to the daytime unstable atmospheric conditions. Stable or near neutral conditions prevail after 1700 h IST with negative SHF. A mesoscale model PSU/NCAR MM5 is run using a high-resolution (1 km) grid over the study region to examine the influence of complex topography on the surface layer parameters and the simulated fluxes are compared with estimated values. Spatial variations of the frictional velocity (u *), C D, surface fluxes, planetary boundary layer (PBL) height and surface winds are noticed according to the topographic variations in the simulation.  相似文献   
43.
Punjab is the most cultivated state in India with the highest consumption of fertilizers. Patiala and Muktsar districts are two agricultural dominated districts of Punjab located in extreme south-east and south-west of the state. This paper highlights temporal variations of the groundwater quality and compares its suitability for irrigation and drinking purpose in these two districts. Water samples were collected in March and September 2003, representing the pre-monsoon and post-monsoon seasons, respectively. Water samples were analysed for almost all major cations, anions, dissolved heavy metals and turbidity. Parameters like sodium adsorption ratio, % sodium, residual sodium carbonate, total hardness, potential salinity, Kelley’s ratio, magnesium ratio, index of base exchange and permeability index were calculated on the basis of chemical data. A questionnaire was also used to investigate perception of villagers on taste and odour. Comparison of the concentration of the chemical constituents with WHO (world health organization) drinking water standards of 2004 and various classifications show that present status of groundwater in Patiala is better for irrigation and drinking purposes except for a few locations with a caution that it may deteriorate in near future. In Muktsar, groundwater is not suitable for drinking. Higher total hardness (TH) and total dissolved solids at numerous places indicate the unsuitability of groundwater for drinking and irrigation. Results obtained in this forms baseline data for the utility of groundwater. In terms of monsoon impact, Patiala groundwater shows dilution and flushing but Muktsar samples show excessive leaching of different chemical components into the groundwater leading to the enrichment of different anions and cations indicating pollution from extraneous sources. No clear correlation between the quality parameters studied here and perceived quality in terms of satisfactory taste response were obtained at electrical conductivity values higher than the threshold minimum acceptable value.  相似文献   
44.
In mountainous region with heterogeneous topography, the geostatistical modeling of the rainfall using global data set may not confirm to the intrinsic hypothesis of stationarity. This study was focused on improving the precision of the interpolated rainfall maps by spatial stratification in complex terrain. Predictions of the normal annual rainfall data were carried out by ordinary kriging, universal kriging, and co-kriging, using 80-point observations in the Indian Himalayas extending over an area of 53,484 km2. A two-step spatial clustering approach is proposed. In the first step, the study area was delineated into two regions namely lowland and upland based on the elevation derived from the digital elevation model. The delineation was based on the natural break classification method. In the next step, the rainfall data was clustered into two groups based on its spatial location in lowland or upland. The terrain ruggedness index (TRI) was incorporated as a co-variable in co-kriging interpolation algorithm. The precision of the kriged and co-kriged maps was assessed by two accuracy measures, root mean square error and Chatfield’s percent better. It was observed that the stratification of rainfall data resulted in 5–20 % of increase in the performance efficiency of interpolation methods. Co-kriging outperformed the kriging models at annual and seasonal scale. The result illustrates that the stratification of the study area improves the stationarity characteristic of the point data, thus enhancing the precision of the interpolated rainfall maps derived using geostatistical methods.  相似文献   
45.
Empirical Green??s function (EGF) technique is considered to be most effective technique for simulation of ground motions due to a finite earthquake source. In the present paper, this technique has been used to simulate ground motion due to a great earthquake. The coastal region of Sumatra Island has been visited by a great earthquake on December 26, 2004. This earthquake has been recorded at several broadband stations including a nearest broadband station PSI in Indonesia. The shear wave contributions in both horizontal components have been simulated at PSI station using EGF technique. The comparison of simulated and observed waveform has been made for various possibilities of rupture parameters in terms of root mean square error. The final rupture model supports rupture velocity of 3.0?km/s with nucleation point supporting northward propagating rupture that coincide with high-slip asperity defined by Sorensen et al. (Bull Seism Soc Am 97:S139?CS151, 2007). The final modeling parameters have been used to simulate record at MDRS station in coastal state of Tamilnadu, India. In an attempt to model a scenario of great earthquake in the Andaman Island, a hypothetical rupture plane is modeled in this region. The event occurred on August 10, 2008 of magnitude 6.2 (M w ) recorded on strong motion array at Port Blair has been used as EGF to simulate records due to the hypothetical great earthquake. Possibilities of earthquake due to the oblique strike-slip and thrust mechanism have been modeled in the present paper. Several possibilities of nucleation point for both cases has been considered, and it is seen that variation of peak ground acceleration at Port Blair station for strike-slip and thrust mechanism is 126?C738 gals and 647?C2,571 gals, respectively, which indicate high seismic hazard potential of Andaman Island.  相似文献   
46.
The semiempirical approach based on envelope summation method given by Midorikawa (Tectonophysics 218:287–295, 1993) has been modified in this paper for modeling of strong motion generation areas (SMGAs). Horizontal components of strong ground motion have been simulated using modifications in the semiempirical approach given by Joshi et al. (Nat Hazard 71:587–609, 2014). Various modifications in the technique account for finite rupture source, layering of earth, componentwise division of energy and frequency-dependent radiation pattern. In this paper, SMGAs of the Uttarkashi earthquake have been modeled. Two different isolated wave packets in the recorded accelerogram have been identified from recorded ground motion, which accounts for two different SMGAs in the entire rupture plane. The approximate locations of SMGAs within the rupture plane were estimated using spatio-temporal variation of 77 aftershocks. Source parameters of each SMGA were calculated from theoretical and observed source displacement spectra computed from two different wave packets in the record. The final model of rupture plane responsible for the Uttarkashi earthquake consists of two SMGAs, and the same has been used to simulate horizontal components of acceleration records at different station using modified semiempirical technique. Comparison of the observed and simulated acceleration records in terms of root mean square error confirms the suitability of the final source model for the Uttarkashi earthquake.  相似文献   
47.
48.
We present chemical abundance measurements from high-resolution observations of seven subdamped Lyα (sub-DLA) absorbers and one DLA system at   z < 1.5  . Three of these objects have high metallicity, with near or supersolar Zn abundance. Grids of cloudy models for each system were constructed to look for possible ionization effects in these systems. For the systems in which we could constrain the ionization parameter, we find that the ionization corrections as predicted by the cloudy models are generally small and within the typical error bars (∼0.15 dex), in general agreement with previous studies. The Al  iii to Al  ii ratio for these and other absorbers from the literature are compared, and we find that while the sub-DLAs have a larger scatter in the Al  iii to Al  ii ratios than the DLAs, there appears to be little correlation between the ratio and   N H  i   . The relationship between the metallicity and the velocity width of the profile for these systems is investigated. We show that the sub-DLAs that have been observed to date follow a similar trend as DLA absorbers, with the more metal rich systems exhibiting large velocity widths. We also find that the systems at the upper edge of this relationship with high metallicities and large velocity widths are more likely to be sub-DLAs than DLA absorbers, perhaps implying that the sub-DLA absorbers are more representative of massive galaxies.  相似文献   
49.
In this paper, we extend the basic model of the restricted four-body problem introducing two bigger dominant primaries m 1 and m 2 as oblate spheroids when masses of the two primary bodies (m 2 and m 3) are equal. The aim of this study is to investigate the use of zero velocity surfaces and the Poincaré surfaces of section to determine the possible allowed boundary regions and the stability orbit of the equilibrium points. According to different values of Jacobi constant C, we can determine boundary region where the particle can move in possible permitted zones. The stability regions of the equilibrium points expanded due to presence of oblateness coefficient and various values of C, whereas for certain range of t (100≤t≤200), orbits form a shape of cote’s spiral. For different values of oblateness parameters A 1 (0<A 1<1) and A 2 (0<A 2<1), we obtain two collinear and six non-collinear equilibrium points. The non-collinear equilibrium points are stable when the mass parameter μ lies in the interval (0.0190637,0.647603). However, basins of attraction are constructed with the help of Newton Raphson method to demonstrate the convergence as well as divergence region of the equilibrium points. The nature of basins of attraction of the equilibrium points are less effected in presence and absence of oblateness coefficients A 1 and A 2 respectively in the proposed model.  相似文献   
50.
The regional climate model (RegCM3) from the Abdus Salam International Centre for Theoretical Physics has been used to simulate the Indian summer monsoon for three different monsoon seasons such as deficit (1987), excess (1988) and normal (1989). Sensitivity to various cumulus parameterization and closure schemes of RegCM3 driven by the National Centre for Medium Range Weather Forecasting global spectral model products has been tested. The model integration of the nested RegCM3 is conducted using 90 and 30-km horizontal resolutions for outer and inner domains, respectively. The India Meteorological Department gridded rainfall (1° × 1°) and National Centre for Environment Prediction (NCEP)–Department of Energy (DOE) reanalysis-2 of 2.5° × 2.5° horizontal resolution data has been used for verification. The RegCM3 forced by NCEP–DOE reanalysis-2 data simulates monsoon seasons of 1987 and 1988 reasonably well, but the monsoon season of 1989 is not represented well in the model simulations. The RegCM3 runs driven by the global model are able to bring out seasonal mean rainfall and circulations well with the use of the Grell and Anthes–Kuo cumulus scheme at 90-km resolution. While the rainfall intensity and distribution is brought out well with the Anthes–Kuo scheme, upper air circulation features are brought out better by the Grell scheme. The simulated rainfall distribution is better with RegCM3 using the MIT-Emanuel cumulus scheme for 30-km resolution. Several statistical analyses, such as correlation coefficient, root mean square error, equitable threat score, confirm that the performance of MIT-Emanuel scheme at 30-km resolution is better in simulating all-India summer monsoon rainfall. The RegCM3 simulated rainfall amount is more and closer to observations than that from the global model. The RegCM3 has corrected its driven GCM in terms of rainfall distribution and magnitude over some parts of India during extreme years. This study brings out several weaknesses of the RegCM model which are documented in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号