首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   1篇
地质学   29篇
海洋学   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   8篇
  2017年   7篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
11.
Geology of Ore Deposits - Individual fluid inclusions in quartz from ore veins of the Askold gold deposit, which was previously attributed to the epithermal type, are studied for the first time. It...  相似文献   
12.
The first data on study of individual fluid inclusions in the Zhilnoye deposit have been obtained. It has been found that the gold-bearing quartz veins of the deposit were formed by heterogeneous hydrothermal fluids with low salt concentrations (0.2–3.6 wt% equiv. NaCl under intermediate temperature conditions of 246–350°C). The fluid pressure was 80–160 bar corresponding to 0.3–0.6 km depths of formation under hydrostatic conditions. The parameters of the mineral-forming fluids of the Zhilnoye deposit correspond to typical parameters of the fluids of epithermal deposits.  相似文献   
13.
14.
Doklady Earth Sciences - Despite the local occurrence of silicic magmatism during the formation of the oceanic crust, the nature of felsic granitoid veins (“oceanic plagiogranite”)...  相似文献   
15.
Kravchishina  M. D.  Lein  A. Yu.  Boev  A. G.  Prokofiev  V. Yu.  Starodymova  D. P.  Dara  O. M.  Novigatsky  A. N.  Lisitzin  A. P. 《Oceanology》2019,59(6):941-959
Oceanology - The article discusses the preliminary results of plume and bottom sediment studies of the Trollveggen hydrothermal vent field based on data from cruise 68 of the R/V Akademik Mstislav...  相似文献   
16.
Iron oxide–apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U–Pb dating of monazite inclusions in the apatite indicates an age of 39.99?±?0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide–apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic–hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.  相似文献   
17.
Mineralogical, fluid inclusion, and geochemical studies of precious metal mineralization within the Baimka trend in the western Chukchi Peninsula have been preformed. Porphyry copper–molybdenum–gold deposits and prospects of the Baimka trend are spatially related to monzonitic rocks of the Early Cretaceous Egdygkych Complex. Four types of precious metal-bearing assemblages have been identified: (1) chalcopyrite + bornite + quartz with high-fineness native gold enclosed in bornite, (2) low-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite-tetrahedrite) ± tourmaline with low-fineness native gold and hessite, (3) rhodochrosite + high-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite- tetrahedrite) with low-fineness native gold, electrum, acanthite, Ag and Au–Ag tellurides, and Ag sulfosalts, and (4) calcite + quartz + sulfide (chalcopyrite, sphalerite, galena) with low-fineness native gold, Ag sulfides and selenides, and Ag-bearing sulfosalts. Study of fluid inclusions from quartz, sphalerite, and fluorite have revealed that hydrothermal ores within the Baimka trend precipitated from fluids with strongly variable salinity at temperatures and pressures ranging from 594 to 104°C and from 1200 to 170 bar, respectively. An indicator of vertical AgPbZn/CuBiMo geochemical zoning is proposed. The value range of this indicator makes it possible to estimate the erosion level of the porphyry–epithermal system. The erosion level of the Baimka deposits and prospects deepens in the following order: Vesenny deposit → Pryamoi prospect → Nakhodka prospect → Peschanka deposit → III Vesenny prospect.  相似文献   
18.
Crystalline and melt inclusions were studied in large (up to 2 cm across) dipyramidal quartz phenocrysts from Miocene dacites in the area of the Rosia Montana Au-Ag deposit in Romania. Data were obtained on the homogenization of fluid inclusions and the composition of crystalline inclusions and glasses in more than 40 melt inclusions, which were analyzed on a electron microprobe. The minerals identified in the crystalline inclusions are plagioclase (An 51–62), orthoclase, micas (biotite and phengite), zircon, magnetite (TiO2 = 2.8 wt %), and Fe sulfide. Two types of the melts were distinguished when studying the glasses of the melt inclusions. Type 1 of the melts is unusual in composition. The average composition of 20 inclusions is as follows (wt %): 76.1 SiO2, 0.39 TiO2, 6.23 Al2O3, 4.61 FeO, 0.09 MnO, 1.64 MgO, 3.04 CaO, 2.79 Na2O, 3.79 K2O (Na2O/K2O = 0.74), 0.07 P2O5, 0.02 Cl. The composition of type 2 of the melts is typical of acid magmas. The average of 23 inclusion analyses is (wt %) 79.3 SiO2, 0.16 TiO2, 10.27 Al2O3, 0.63 FeO, 0.08 MnO, 0.29 MgO, 1.83 CaO, 3.56 Na2O, 2.79 K2O (Na2O/K2O = 1.28), 0.08 P2O5, 0.05 Cl. The compositions of these melts significantly differ in concentrations of Ti, Al, Fe, Mg, Ca, Na, and K. The high analytical totals of the analyses (close to 100 wt %, more specifically 98.9 and 99.0 wt %, respectively) testify that the melts were generally poor in water. Two inclusions of type 1 and two inclusions of type 2 were analyzed on an ion probe, and their analyses show remarkable differences in the concentrations of certain trace elements. These concentrations (in ppm) are for the melts of types 1 and 2, respectively, as follows: 10.0 and 0.69 for Be, 29.3 and 5.7 for B, 6.4 and 1.4 for Cr, 146 and 6.9 for V, 74 and 18 for Cu, 92 and 29 for Rb, 45 and 15 for Zr, 1.7 and 0.6 for Hf, 10.3 and 2.3 for Pb, and 52 and 1.3 for U. The Th/U ratio of these two melt types are also notably different: 0.04 and 0.19 for type 1 and 2.0 and 2.9 for type 2. These data led us to conclude that the magmatic melts were derived from two different sources. Our data on the melts of type 1 testify that the magmatic chamber was contaminated with compositionally unusual crustal rocks (perhaps, sedimentary, metamorphic, or hydrothermal rocks enriched in Si, Fe, Mg, U, and some other components). This can explain the ore-forming specifics of magmatic chambers in the area.  相似文献   
19.
The partitioning of Fe and Zn between coexisting fahlore and sphalerite and fluid inclusions in sphalerite from the Darasun gold deposit have been studied. These data were used to estimate the formation temperature of the minerals by the sphalerite–fahlore geothermometer. The calculated crystallization temperature of 175–355°С is close to the homogenization temperature of fluid inclusions in sphalerite of 225–385°С.The estimated pressure for fluid inclusion trapping ranged from 340 to 1420 bar. The sulfur fugacity obtained from the FeS content in sphalerite associated with pyrite and the calculated temperature ranges from 10–5.5 to 10–11 bar.  相似文献   
20.
Geology of Ore Deposits - The Gol’tsovoe Ag–Pb–Zn-deposit (1600 t silver in ores with an average grade of 1025 g/t Ag) is located on the southeastern flank of the Dukat mining...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号