首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3955篇
  免费   38篇
  国内免费   60篇
测绘学   43篇
大气科学   320篇
地球物理   665篇
地质学   2015篇
海洋学   347篇
天文学   473篇
综合类   64篇
自然地理   126篇
  2023年   16篇
  2022年   52篇
  2021年   70篇
  2020年   90篇
  2019年   101篇
  2018年   226篇
  2017年   220篇
  2016年   252篇
  2015年   110篇
  2014年   244篇
  2013年   319篇
  2012年   319篇
  2011年   314篇
  2010年   333篇
  2009年   268篇
  2008年   255篇
  2007年   283篇
  2006年   229篇
  2005年   103篇
  2004年   38篇
  2003年   30篇
  2002年   30篇
  2001年   27篇
  2000年   27篇
  1999年   9篇
  1998年   10篇
  1997年   18篇
  1996年   8篇
  1995年   3篇
  1994年   3篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1958年   2篇
  1955年   1篇
排序方式: 共有4053条查询结果,搜索用时 15 毫秒
81.
We study earthquake-induced soft-sediment deformation (seismites) in reference Quaternary sections of southeastern Altai. Sediments in the sections bear signature of liquefaction and fluidization and deformation is localized in thin (few centimeters to 0.5–1.0 m) continuously striking and frequently repeated layers sandwiched between undeformed sediments. The soft-sediment deformation records coseismic motion of different slip geometries. Seismic origin is also inferred for layers and lenses of coarse colluvium slid into the lake bottom from the slopes, which intrude plane-bedded silt and sand and vary in thickness from a few centimeters to one meter. The occurrence of seismic soft-sediment deformation at different stratigraphic levels of the Quaternary and in the Upper Pliocene Beken Formation confirms the high seismicity of southeastern Altai in Quaternary time.  相似文献   
82.
83.
Results of experiments are considered for flows generated by different sources-sinks of mass in the rotating annular channel with beta-effect simulation using the inclined bottom. Diagrams of regimes are presented in parameters of the dimensionless angular velocity of the zonal flow averaged over the channel width and the dimensionless angular velocity of transport of vortex perturbations of cyclonic and anticyclonic types. In experiments and the simplest linear theories, most attention is paid to diagram regions with a slow motion of vortices relative to the rotating coordinate system near the parameters for stationary Rossby waves.  相似文献   
84.
In this model, we apply a nonlinear three-dimensional sigma-coordinate model to study the waves and currents in the Sea of Azov generated by different fields of wind forcing: a constant wind, a quickly varying real wind obtained using the data of reanalysis applying the SKIRON model, and the wind resulting from their combined forcing. This mathematical model was also applied to study the transformation of the passive admixture appearing under the influence of wind fields in the Sea of Azov considered here. We compared the results of numerical calculations with the field data obtained under the wind forcing at a number of hydrological stations. We found the regularities of the water transport driven by onshore and offshore winds, the velocities of the currents, and the characteristics of the evolution of polluted regions at different depths as functions of the nonstationary wind intensity and the velocities of the stationary currents.  相似文献   
85.
One possible approach to estimating the time interval between large-scale Tōnankai (Tōkai) and Nankai earthquakes on the Japan arc is sequential assimilation of crustal deformation data. We conducted numerical modeling of sequential assimilation using surface deformation calculated from earthquake generation cycle simulations along the Nankai Trough. To account for observation noise, we used measured ocean bottom pressure gauge data, excluding tidal modulation, from a station on the ocean bottom cable network Dense Oceanfloor Network System for Earthquakes and Tsunamis in the Kumano basin. We used sequential importance sampling as our data assimilation method. We found that as the amount of data increased, the estimated time interval between the Tōnankai and Nankai earthquakes approached the “true” observed interval. In addition, the noise in the pressure gauge data was sufficiently small that simulated crustal deformation patterns could be distinguished for different time intervals.  相似文献   
86.
The proposed algorithm comprises three main steps. The first step is the evaluation of the sediment transport and budget. It was shown that the root segment of the Vistula Spit is dominated by eastward longshore sediment transport (up to 50 thousand m3/year). Over the rest of the spit, the shoreline??s orientation causes westward sediment transport (more than 100 thousand m3/year). The gradients of the longshore and cross shore sediment transport become the major contributors to the overall sediment balance. The only exception is the northeastern tip of the spit due to the appreciable imbalance of the sediment budget (13 m3m?1 yr?1). The second step in the prediction modeling is the estimation of the potential sea-level changes during the 21st century. The third step involves modeling of the shoreline??s behavior using the SPELT model [6, 7, 8]. In the most likely scenario, the rate of the recession is predicted to be about 0.3 m/year in 2010?C2050 and will increase to 0.4 m/year in 2050?C2100. The sand deficit, other than the sea-level rise, will be a key factor in the control of the shoreline??s evolution at the northeastern tip of the spit, and the amount of recession will range from 160 to 200 m in 2010?C2100.  相似文献   
87.
88.
This review contains the most significant results of Russian studies in the field of atmospheric electricity in 2011–2014. It is part of the Russian National Report on Meteorology and Atmospheric Sciences to the International Association of Meteorology and Atmospheric Sciences (IAMAS). The report was presented and approved at the XXVI General Assembly of the International Union of Geodesy and Geophysics (IUGG).1 The review is followed by a list of the main published works on the studies of atmospheric electricity of Russian scientists in 2011–2014.  相似文献   
89.
We compute model spectra of the beam attenuation coefficient in surface waters of the Mediterranean Sea. These spectra are used to determine the contribution of the components of seawater (suspended matter, yellow substance, pigments of phytoplankton, and pure water) to the beam attenuation coefficient in different types of seawater. For the surface waters, we establish the relationship between the light scattering coefficient and the attenuation coefficient at a wavelength of 547 nm and determine the background (limiting minimum) value of the coefficient of absorption by the yellow substance in waters of the Mediterranean Sea. It is compared with the values of the same parameter for some other basins (Black Sea, Lake Baikal, Baltic Sea, and oceanic waters).  相似文献   
90.
Several coeval volcanogenic complexes indicating synchronous volcanic events in the Sea of Japan and the Sea of Okhotsk are defined. Volcanics from different-age complexes of the Sea of Okhotsk show many features in common and are attributed to the Pacific type of calc-alkaline series. They were formed in geodynamic settings of the active continental margin and point to its origination on the continental crust of the fragmented Asian continent margin. The volcanic rocks developed in the Sea of Japan reflect different rifting stages. The initial stage was marked by an eruption of calc-alkaline lavas (Paleocene-Eocene complex). At the stage of the marginal-sea spreading, erupted volcanics of the middle Miocene-Pliocene complex were melted from the depleted mantle and magmatism terminated by an eruption of postspreading Pliocene-Holocene volcanics melted from the enriched mantle EM I. Along with the differences, the magmatism in the Sea of Japan and Sea of Okhotsk has some features in common. In both cases, the sialic component of the lithosphere substantially influenced the magma generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号