全文获取类型
收费全文 | 1982篇 |
免费 | 0篇 |
国内免费 | 7篇 |
专业分类
测绘学 | 10篇 |
大气科学 | 310篇 |
地球物理 | 508篇 |
地质学 | 1139篇 |
海洋学 | 18篇 |
天文学 | 1篇 |
综合类 | 1篇 |
自然地理 | 2篇 |
出版年
2009年 | 19篇 |
1998年 | 18篇 |
1997年 | 14篇 |
1996年 | 25篇 |
1995年 | 23篇 |
1994年 | 14篇 |
1993年 | 22篇 |
1992年 | 51篇 |
1991年 | 39篇 |
1990年 | 50篇 |
1989年 | 48篇 |
1988年 | 48篇 |
1987年 | 48篇 |
1986年 | 47篇 |
1985年 | 37篇 |
1984年 | 46篇 |
1983年 | 66篇 |
1982年 | 62篇 |
1981年 | 65篇 |
1980年 | 45篇 |
1979年 | 63篇 |
1978年 | 62篇 |
1977年 | 44篇 |
1976年 | 33篇 |
1975年 | 45篇 |
1974年 | 48篇 |
1973年 | 45篇 |
1972年 | 49篇 |
1971年 | 44篇 |
1970年 | 54篇 |
1969年 | 33篇 |
1968年 | 49篇 |
1967年 | 47篇 |
1966年 | 33篇 |
1965年 | 21篇 |
1964年 | 52篇 |
1963年 | 18篇 |
1962年 | 31篇 |
1960年 | 52篇 |
1959年 | 12篇 |
1957年 | 18篇 |
1956年 | 13篇 |
1955年 | 17篇 |
1954年 | 27篇 |
1953年 | 20篇 |
1952年 | 27篇 |
1951年 | 14篇 |
1950年 | 36篇 |
1949年 | 18篇 |
1948年 | 17篇 |
排序方式: 共有1989条查询结果,搜索用时 31 毫秒
61.
In this paper, the calculating charts and formulae about wave pressure on the breast wall are derived with seven parameters on the basis of physical model study. The verification shows that the charts agree with the example, and are adopted in the Specifications of Fishery Harbours Breakwater by the Ministry of Agricultures. 相似文献
62.
The formation of tropical cyclones 总被引:16,自引:1,他引:16
Prof. Dr. W. M. Gray 《Meteorology and Atmospheric Physics》1998,67(1-4):37-69
Summary This paper attempts a synthesis of new observations and new concepts on how tropical cyclone formation occurs. Despite many worthy observational and numerical modeling studies in recent decades, our understanding of the detailed physical processes associated with the early stages of tropical cyclone formation is still inadequate; operational forecast skill is not very high. Although theoretical ideas cover a wide range of possibilities, results of new observations are helping us to narrow our search into more specific and relevant topic areas.With 33 FiguresPrologueThis paper is dedicated to Professor Herbert Riehl under whom I studied tropical meteorology at the University of Chicago from 1957–1961 and was later associated with at Colorado State University (CSU). Professor Riehl arranged my first aircraft flights into hurricanes in the late 1950s and gave great encouragment to me to explore the secrets of what causes a tropical disturbance to be transformed into a tropical storm.Herbert would persist in asking me nearly every week or so what causes a hurricane to form? I and my graduate students and research colleagues at CSU have been working to uncover the secrets of tropical cyclone formation ever since. The following article gives my current best estimate of the primary physical processes involved with this topic. 相似文献
63.
Prof. Dr. G. W. Platzman 《Meteorology and Atmospheric Physics》1988,38(1-2):70-88
Summary The standard equations for the theory of atmospheric tides are solved here by an integral representation on the continuous spectrum of free oscillations. The model profile of back-ground temperature is that of the U.S. Standard Atmosphere in the lower and middle atmosphere, and in the lower thermosphere, above which an isothermal top extends to arbitrarily great heights. The top is warm enough to bring both the Lamb and the Pekeris modes into the continuous spectrum.Computations are made for semidiurnal lunar tidal pressure at sea level at the equator, and the contributions are partitioned according to vertical as well as horizontal structure. Almost all the response is taken up by the Lamb and Pekeris modes of the slowest westward-propagating gravity wave. At sea level, the Lamb-mode response is direct and is relatively insensitive to details of the temperature profile. The Pekeris mode at sea level has an indirect response-in competition with the Lamb mode-and, as has been known since the time of its discovery, it is quite sensitive to the temperature profile, in particular to stratopause temperature. In the standard atmosphere the Lamb mode contributes about +0.078 mb to tidal surface pressure at the equator and the Pekeris mode about –0.048 mb.The aim of this investigation is to illustrate some consequences of representing the tide in terms of the structures of free oscillations. To simplify that task as much as possible, all modifying influences were omitted, such as background wind and ocean or earth tide. Perhaps the main defect of this paper's implementation of the free-oscillation spectrum is that, in contrast to the conventional expansion in the structures of forced oscillations, it does not include dissipation, either implicity or explicity, and thus does not satisfy causality. Dissipation could be added implicity by means of an impedance condition, for example, which would cause up-going energy flux to exceed downgoing flux at the base of the isothermal top layer. To achieve complete causality, however, the dissipation must be modeled explicity. Nevertheless, since the Lamb and Pekeris modes are strongly trapped in the lower and middle atmosphere, where dissipation is rather weak (except possibly in the surface boundary layer), more realistic modeling is not likely to change the broad features of the present results.Symbols
a
earth's mean radius; expansion coefficient in (5.3)
-
b
recursion variable in (7.4); proximity to resonance in (9.2)
-
c
sound speed in (2.2); specific heatc
p
in (2.2)
-
f
Coriolis parameter 2sin in (2.2)
-
g
standard surface gravity
-
h
equivalent depth
-
i
; discretization index in (7.3)
-
j
index for horizontal structure
-
k
index for horizontal structure; upward unit vectork in (2.2)
-
m
wave number in longitude
-
n
spherical-harmonic degree; number of grid layers in a model layer
-
p
tidal pressure perturbation; background pressurep
0
-
q
heating function (energy per mass per time)
-
r
tidal state vector in (2.1)
-
s
tidal entropy perturbation; background entropys
0
-
t
time
-
u
tidal horizontal velocityu
-
w
tidal vertical component of velocity
-
x
excitation vector defined in (2.3); vertical coordinate lnp
*/p
0 [except in (3.8), where it is lnp
/p
0]
-
y
vertical-structure function in (7.1)
-
z
geopotential height
-
A
constant defined in (6.2)
-
C
spherical-harmonic expansion coefficient in (3.6)
-
D
vertical cross section defined in (5.6) and (5.9)
-
E
eigenstate vector
-
F
vertical-structure function for eigenstate pressure in (3.2) [re-defined with WKB scaling in (7.2)]
-
G
vertical-structure function for eigenstate vertical velocity in (3.2) [re-defined with WKB scaling in (7.2)]
-
H
pressure-scale height
-
I
mode intensity defined in (8.1)
-
K
quadratic form defined in (4.4)
-
L
quadratic form defined in (4.4); horizontal-structure magnification factor defined in (5.11)
-
M
vertical-structure magnification factor defined in (4.6)
-
P
eigenstate pressure in (3.2); tidal pressure in (6.2)
-
R
tidal state vector in (5.1)
-
S
eigenstate entropy in (3.2); spherical surface area, in differential dS
-
T
background molecular-scale (NOAA, 1976) absolute temperatureT
0
-
U
eigenstate horizontal velocityU in (3.2); coefficient in (7.3)
-
V
horizontal-structure functionV for eigenstate horizontal velocity in (3.2); recursion variable in (7.3)
-
W
eigenstate vertical velocity in (3.2)
-
X
excitation vector in (5.1)
-
Y
surface spherical harmonic in (3.7)
-
Z
Hough function defined in (3.6)
-
+dH/dz
-
(1––)/2
-
Kronecker delta; Dirac delta; correction operator in (7.6)
-
equilibrium tide elevation
-
(square-root of Hough-function eigenvalue)
-
ratio of specific gas constant to specific heat for air=2/7
-
longitude
-
-
-
background density 0
-
eigenstate frequency in (3.1)
-
proxy for heating functionq =c
P/t
-
latitude
-
tide frequency
-
operator for the limitz
-
horizontal-structure function for eigenstate pressure in (3.2)
-
Hough function defined in (6.2)
-
earth's rotation speed
-
horizontal gradient operator
- ()0
background variable
- ()*
surface value of background variable
- ()
value at base of isothermal top layer
- Õ
state vector with zerow-component
- ,
energy product defined in (2.4)
- | |
energy norm
- ()*
complex conjugate
With 10 Figures 相似文献
64.
Dr. T. A. Huhtelin Prof. T. T. Alapieti Dr. J. J. Lahtinen 《Mineralogy and Petrology》1990,42(1-4):57-70
Summary Three major PGE-bearing mineralized zones have been found in the layered series of the early Proterozoic Penikat layered intrusion. These are designated as the Sompujärvi (SJ), Ala-Penikka (AP) and Paasivaara (PV) Reefs according to the site of their initial discovery.The uppermost of these, the PV Reef, has the highest Pt/Pd ratio. It is located in the transition zone between the fourth and the fifth megacyclic units. The main host rock is the uppermost anorthosite, disseminated sulphides and associated PGM being concentrated in the interstices of this plagioclase orthocumulate. The Reef has also been encountered in other parts of the transition zone, however, and sometimes even in the lowermost parts of the fifth megacyclic unit. The dominant sulphide paragenesis is chalcopyrite-pyrrhotite-pentlandite, whereas the PGM identified are represented by sperrylite (PtAs2), kotulskite (PdTe), merenskyite (PdTe2), isomertieite (Pd11Sb2As2), stibiopalladinite (Pd5Sb2), cooperite (PtS) and braggite ((Pt, Pd, Ni)S).It is suggested that the PV Reef was formed in the mixing process when the fifth magma pulse intruded into the magma chamber. Mixing of the new magma with the older residual magma in the chamber accounted for the sulphide precipitation. Mixing and convection were probably turbulent at first and the sulphides were thus able to "scavenge" PGE from a large amount of silicate melt. The metal ratios in the mineralization point to a close genetic relationship with the fifth magma pulse.
With 8 Figures 相似文献
Das Paasivaara PGE Reef in der Penikat-Intrusion, Nord-Finnland
Zusammenfassung In den geschichteten Serien der frühproterozoischen Intrusion von Penikat kommen drei grössere PGE-führende Zonen vor. Diese werden als die Sompujärvi (SJ), Ala-Penikka (AP) und Paasivaara (PV) Reefs bezeichnet, entsprechend den Lokalitäten der Entdeckung.Das am höchsten gelegene PV Reef hat die höchsten Pt/Pd Verhältnisse. Es liegt in der Übergangszone zwischen der vierten und der fünften megazyklischen Einheit. Das wichtigste Wirtsgestein ist der oberste Anorthosit, wo disseminierte Sulfide und assoziierte PGM in den Zwischenräumen dieses Plagioklas-Orthokumulates vorkommen. Das Reef wurde auch in anderen Teilen der Überganszone beobachtet und manchmal sogar in den untersten Partien der fünften megazyklischen Einheit. Die dominierende Sulfidparagenese ist Kupferkies-Magnetkies-Pentlandit; PGM sind Sperrylith (PtAs2), Kotulskit (PdTe), Merenskyit (PdTe2), Isomertieit (Pd11Sb2As2), Stibiopalladinit (Pd5Sb2), Cooperite (PtS) und Braggit ((Pt, Pd, Ni)S).Es wird angeregt, dass das PV Reef während der Mischungsvorgänge bei der Intrusion des fünften Magma Pulses in die Magmenkammer entstanden ist. Mischung des neuen Magmas mit dem alten Residual-Magma in der Kammer war für die Ausfällung der Sulfide verantwortlich. Mischung und Konvektion dürften anfangs turbulent gewesen sein, und so konnten die Sulfide die PGE aus einem beträchtlichen Anteil der Silikatschmelze entfernen. Die Metallverhältnisse dieser Vererzung lassen eine enge genetische Verbindung mit dem fünften Magmapuls erkennen.
With 8 Figures 相似文献
65.
Changes in the water regime of the caspian sea 总被引:2,自引:0,他引:2
The article deals with issues of structure and dynamics of the Caspian Sea water balance. On the base of historical, paleogeomorphological
and other data the evolution history of the Caspian Sea and its basin has been observed for different time intervals down
to 400 thous. years ago. Presented are computerized data on water balance components in the current centenary obtained from
instrumental observations, revealed are causes of the sea-level fluctuations within that time interval and anthropogenic factor
contribution to this process. Based on the analysis of this material, an attempt has been undertaken to present a scenarion
of a possible sea-level position of the Caspian Sea with the expected versions of climatic changes at the end of the XX and
beginning of the XXI centuries. 相似文献
66.
67.
68.
Prof. Giuseppe Petrucci 《Pure and Applied Geophysics》1940,2(1):20-28
Riassunto Dopo avere accennato all'importanza della registrazione dei movimenti del magma nel condotto vulcanico ai fini scientifici, viene mostrata, attraverso alcune esperienze, la possibilità di una utile registrazione e che tale possibilità può raggiungersi più facilmente mediante l'impiego dei seguenti metodi usati nella prospezione del sottosuolo: metodo di Wenner, metodo della misura diretta della resistenza, metodo induttivo.
Zusammenfassung Nach Hervorhebung der Wichtigkeit die Bewegungen des Magmas im innern eines Vulkans registrieren zu können, wird gezeigt, auf Grund einiger Experimente, wie diese Registrierung möglich ist und zwar durch die Anwendung der geoelektrischen Bodenforschungs-Verfahren, nähmlich: di Wenner-Methode, die Methode der direkten Widerstands-Messung, Induktions-Verfahren.
Résumé Après avoir fait allusion à l'importance scientifique de l'enregistrement des mouvements du magna dans le conduit d'un volcan, on démontre, avec quelques expériences, la possibilité d'un enregistrement convenable qu'on peut obtenir d'ailleurs plus aisément en enployant une des méthodes suivantes utilisées dans la prospection du sous-sol: méthode de Wenner, méthode de la mésure directe de la résistance, méthode inductive.相似文献
69.
The Precambrian geology of the Adirondack highlands was previously interpreted as a sedimentary terrane repeatedly invaded during the Grenville orogenic cycle by igneous intrusions to form successively the large anorthosite massif and satellites, numerous olivine gabbro and dolerite bodies, gneisses of the quartz-syenite and charnockite series, and granites. A reinterpretation is suggested.In two representative areas major bodies of anorthosite and gneisses of the quartz-syenite and charnockite series are shown to occupy cores of mantled domes and nappes. They are parts of an older basement complex formed during an earlier, pre-Grenville orogenic cycle. Most of the now-recognizable Grenville metasediments were supracrustal rocks deposited on the denuded surface of this basement terrane. Olivine-basaltic magma invaded both the basement and the supracrustal rocks, forming gabbro and ophitic dolerite bodies. The Grenville orogenic cycle (ca. 1100 m.y. B.P.) deformed and metamorphosed all these rocks to a complex of mantled domes, folds, and nappes. The geology of the older basement rocks is heavily masked by the Grenville orogeny.The pre-Grenville basement consists of relatively homogenous masses of metaanorthosite, metanorite, charnockite, and gneisses of granitic composition. The supracrustal rocks occur in well-defined stratigraphic sequences of varied metasediments, gneisses, and charnockites. Conglomerates, arkoses, and acidic volcanics may all metamorphose to foliated rocks of granitic composition. Charnockites formed by high-grade metamorphism of initially dry, pre-existing quartzofeldspathic rocks including metamorphic and plutonic igneous rocks in the basement complex and acidic volcanics in the supracrustal sequence. Water content of rocks also controlled the extent of magmatism during the Grenville orogenic period. Anatectic granite is mainly limited to small, nebulite-bordered granite bodies, and to the presence of venitic migmatites in metamorphosed rocks with granitic components.
Zusammenfassung Die Gesteinsserien des Präkambriums in den Adirondack-Highlands wurde früher als Sedimente gedeutet, in welche während des Grenville-Orogenzyklus mehrfach Eruptiv-Intrusionen eindrangen. Dadurch sollen nacheinander das große Anorthosit-Massiv mit seinen Satelliten, zahlreiche Olivingabbro- und Dolerit-Körper, die Gneise der Quarz-Syenit- und Charnockit-Serie und die Granite entstanden sein. Eine andere Erklärung wird hier vorgeschlagen.In zwei typischen Gebieten werden größere Körper von Anorthosit und von Gneisen der Quarz-Syenit- und Charnockit-Serie beschrieben, welche die Kerne der ummantelten Gneisdome und der Decken einnehmen. Sie sind Teile eines älteren Grundgebirges, das in einem früheren Prä-Grenville-Zyklus entstanden ist. Die meisten der heute bekannten Grenville metasediments bestanden aus suprakrustalen Gesteinen, die auf der heute abgetragenen Oberfläche dieses Grundgebirges abgelagert wurden. Olivin-basaltisches Magma drang sowohl in das Grundgebirge als auch in die suprakrustalen Gesteine ein, wodurch Gabbro- und ophitische Doleritkörper entstanden. Der Grenville-Orogenzyklus (vor etwa 1,1×109 Jahren) metamorphisierte diese Gesteine zu dem Komplex der ummantelten Gneisdome, Falten und Decken. Die Geologie des älteren Grundgebirges ist durch die Grenville-Orogenese stark verändert worden.Das Prä-Grenville-Grundgebirge besteht aus verhältnismäßig homogenen Meta-Anorthositen, Metanoriten, Charnockiten und Gneisen mit granitischer Zusammensetzung. Die suprakrustalen Gesteine kommen in gut bestimmten, stratigraphischen Abfolgen von verschiedenen Metasedimenten, Gneisen und Charnockiten vor. Konglomerate, Arkosen und saure Vulkanite dürften durch Metamorphose in geschieferte Gesteine granitischer Zusammensetzung übergegangen sein. Charnockite entstanden durch intensive Metamorphose der anfangs trockenen, vormals quarz- und feldspatreichen Gesteine, welche Metamorphite und Plutonite des Grundgebirges und saure Vulkanite der suprakrustalen Serie einschließen. Auch der Wassergehalt der Gesteine beeinflußte den Grad des Magmatismus während des Grenville-Orogenzyklus. Anatektischer Granit ist hauptsächlich an kleine, von Nebulit umgebene Granit-Körper und an die Anwesenheit von Venit-Migmatiten in metamorphen Gesteinen granitischer Zusammensetzung gebunden.
Résumé L'interprétation géologique Précambrienne des plateaux de l'Adirondack était considérée jusqu'à ce jour comme un terrain sédimentaire envahi à plusieurs reprises pendant le cycle orogénique de Grenville par des intrusions ignées pour former successivement le grand massif anorthosite et ses satellites, de nombreux corps gabbro-olivines et dolérites, des gneiss de séries quartzsyénites et charnockites, et des granites. Nous suggérons une réinterprétation.Dans deux domaines représentatifs, les corps principaux d'anorthosite et les gneiss de séries quartz-syénite et charnockite se révèlent comme occupant les noyaux de dômes recouvertes et de nappes. Ce sont des parties d'un fond complexe plus ancien formé pendant un cycle orogénique pré-Grenville antérieur. La plupart des «métasédiments Grenville» maintenant reconnaissables étaient des roches sédimentaires et volcaniques, déposées sur la surface dénudée de ce terrain de fond. Le magma olivine-basaltique a envahi à la fois le fond et les roches sédimentaires et volcaniques, formant du gabbro et des corps ophitiques et dolérites.Le cycle orogénique de Grenville (ca. 1100 m. y. B. P.) a déformé et métamorphosé toutes ces roches en une completié de dômes recouvertes, de plis et de nappes. La géologie des roches de fond plus anciennes est lourdement masquée par l'orogénie de Grenville.Le fond pré-Grenville consiste en masses relativement homogènes de métaanorthosite, métanorite, charnockite et en gneiss de composition granitique. Les roches sédimentaires et volcaniques apparaissent en séries stratigraphiques bien définie d'une variété de métasédiments, de gneiss et de charnockite. Des conglomérates, des arkoses et des roches volcaniques acides peuvent toutes se métamorphoser en roches foliacées de composition granitique. Des charnockites ont dû leur formation à un métamorphisme à haut degré de roches quartzofeldspathiques pré-existantes, initialement sèches, y compris les roches ignées métamorphiques et plutoniques dans le système du fond et acidovolcaniques dans la roche sédimentaire et volcanique subséquente. Le contenu aqueux des roches contrôlait également l'importance du magmatisme pendant la période orogénique de Grenville. Le granite anatectique se réduit principalement à des corpuscules granitiques bordés de nébulite et à la présence de migmatites vénétiques dans des roches métamorphosées aux composants granitiques.
Adirondack Highland'a (CACIII). .相似文献
70.