首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7288篇
  免费   44篇
  国内免费   36篇
测绘学   55篇
大气科学   1231篇
地球物理   1695篇
地质学   3729篇
海洋学   102篇
天文学   433篇
综合类   11篇
自然地理   112篇
  2013年   133篇
  2012年   85篇
  2011年   93篇
  2010年   68篇
  2009年   109篇
  2008年   77篇
  2007年   66篇
  2006年   85篇
  2005年   77篇
  2004年   64篇
  1998年   58篇
  1997年   64篇
  1996年   102篇
  1995年   71篇
  1994年   63篇
  1993年   79篇
  1992年   176篇
  1991年   178篇
  1990年   167篇
  1989年   151篇
  1988年   159篇
  1987年   190篇
  1986年   152篇
  1985年   140篇
  1984年   176篇
  1983年   196篇
  1982年   209篇
  1981年   223篇
  1980年   172篇
  1979年   204篇
  1978年   184篇
  1977年   170篇
  1976年   138篇
  1975年   155篇
  1974年   149篇
  1973年   156篇
  1972年   147篇
  1971年   152篇
  1970年   161篇
  1969年   104篇
  1968年   140篇
  1967年   134篇
  1966年   89篇
  1965年   96篇
  1964年   109篇
  1962年   95篇
  1960年   113篇
  1954年   69篇
  1952年   60篇
  1950年   63篇
排序方式: 共有7368条查询结果,搜索用时 15 毫秒
91.
Until now a simple Photometric Sunspot Index (PSI) model was used (e.g. Willsonet al., 1981) to describe the contribution of sunspots to the solar irradiance deficit measurement by ACRIM. In this work we replace this model by a photometry of sunspot pictures for the period of 19 August to 4 September, 1980 taking into account the individual features, like lightbridges or umbral dots, of each spot. The main results of this preliminary analysis are: (1) theA u/A p ratios and alsos the values vary in a wide range and are by no means constant as in the PSI model; (2) the general trend of the irradiance deficit from our analysis agrees well with the ACRIM measurements; (3) on some days there are differences of more than 50% between the deficits derived from our measurements and from the PSI model.Paper presented at the 11th Eurpean Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain  相似文献   
92.
93.
Gamma-ray astronomy is devoted to study nuclear and elementary particle astrophysics and astronomical objects under extreme conditions of gravitational and electromagnetic forces, and temperature. Because signals from gamma rays below 1 TeV cannot be recorded on ground, observations from space are required. The photoelectric effect is dominant <100 keV, Compton scattering between 100 keV and 10 MeV, and electron–positron pair production at energies above 10 MeV. The sun and some gamma ray burst sources are the strongest gamma ray sources in the sky. For other sources, directionality is obtained by shielding / masks at low energies, by using the directional properties of the Compton effect, or of pair production at high energies. The power of angular resolution is low (fractions of a degree, depending on energy), but the gamma sky is not crowded and sometimes identification of sources is possible by time variation. The gamma ray astronomy time line lists Explorer XI in 1961, and the first discovery of gamma rays from the galactic plane with its successor OSO-3 in 1968. The first solar flare gamma ray lines were seen with OSO-7 in 1972. In the 1980’s, the Solar Maximum Mission observed a multitude of solar gamma ray phenomena for 9 years. Quite unexpectedly, gamma ray bursts were detected by the Vela-satellites in 1967. It was 30 years later, that the extragalactic nature of the gamma ray burst phenomenon was finally established by the Beppo–Sax satellite. Better telescopes were becoming available, by using spark chambers to record pair production at photon energies >30 MeV, and later by Compton telescopes for the 1–10 MeV range. In 1972, SAS-2 began to observe the Milky Way in high energy gamma rays, but, unfortunately, for a very brief observation time only due to a failure of tape recorders. COS-B from 1975 until 1982 with its wire spark chamber, and energy measurement by a total absorption counter, produced the first sky map, recording galactic continuum emission, mainly from interactions of cosmic rays with interstellar matter, and point sources (pulsars and unidentified objects). An integrated attempt at observing the gamma ray sky was launched with the Compton Observatory in 1991 which stayed in orbit for 9 years. This large shuttle-launched satellite carried a wire spark chamber “Energetic Gamma Ray Experiment Telescope” EGRET for energies >30 MeV which included a large Cesium Iodide crystal spectrometer, a “Compton Telescope” COMPTEL for the energy range 1–30 MeV, the gamma ray “Burst and Transient Source Experiment” BATSE, and the “Oriented Scintillation-Spectrometer Experiment” OSSE. The results from the “Compton Observatory” were further enlarged by the SIGMA mission, launched in 1989 with the aim to closely observe the galactic center in gamma rays, and INTEGRAL, launched in 2002. From these missions and their results, the major features of gamma ray astronomy are:
  • Diffuse emission, i.e. interactions of cosmic rays with matter, and matter–antimatter annihilation; it is found, “...that a matter–antimatter symmetric universe is empirically excluded....”
  • Nuclear lines, i.e. solar gamma rays, or lines from radioactive decay (nucleosynthesis), like the 1.809 MeV line of radioactive 26Al;
  • Localized sources, i.e. pulsars, active galactic nuclei, gamma ray burst sources (compact relativistic sources), and unidentified sources.
  •   相似文献   
    94.
    We report on observations of transit events of the transiting planets XO‐1b and TrES‐1 with a 25 cm telescope of the University Observatory Jena. With the transit timings for XO‐1b from all 50 available XO, SuperWASP, Transit Light Curve (TLC)‐Project‐ and Exoplanet Transit Database (ETD)‐data, including our own I ‐band photometry obtained in March 2007, we find that the orbital period is P = (3.941501 ± 0.000001) d, a slight change by ∼3 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we present new R ‐band photometry of two transits of TrES‐1. With the help of all available transit times from literature this allows us to refine the estimate of the orbital period: P = (3.0300722 ± 0.0000002) d. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
    95.
    The Adams County, Colorado, H5 chondrite contains a lithic fragment, 1 cm in size, that is texturally and mineralogically quite different from the chondritic host. It is composed of: a groundmass of fine-grained euhedral to subhedral olivine (3–15 μm) and interstitial glass enclosing larger olivine and pyroxene grains (0.15-0.5 mm; about 15 vol %); an assemblage of enstatite grains (subfragment within) and an assemblage of olivine plus orthopyroxene (a second subfragment); and about 11 vol % grains of mixed troilite and nickel-iron metal. Analyses yielded these results: (i) olivine grains of the fragment groundmass have a compositional range (Fa12–45) and most grains contain substantial CaO and Cr2O3 (~ 0.20 and 0.30 avg. wt%, respectively); interstitial glass has ~ 55 wt% SiO2; (ii) larger olivine grains of the fragment are similarly high in CaO and Cr2O3 and also have a wide FeO/MgO range; one unusual pyroxene is an Mg-rich pigeonite; (iii) the metal is martensite in composition (11–14 wt% Ni); and (iv) major and trace element analyses by INAA indicate an H-group bulk composition for the entire 1 cm lithic fragment. On the basis of its texture and bulk and mineral compositions, the fragment is interpreted to represent unequilibrated H-group material that was partly melted by impact. The Ca- and Cr-enriched groundmass olivine and interstitial glass resulted from rapid crystallization of the chondritic melt. The Ca- and Cr-enriched larger silicate grains, including the enstatite sub-fragment and the pigeonite grain, are residual, unmelted clasts from the target material (this is supported by the presence of similar material in actual H3 chondrites). Further impact brecciation of the clast-laden melt material, and resultant impact-splashing accounts for the presence of the fragment in the H-group Adams County host and documents the coexistence of unequilibrated and equilibrated H-group material as surface regolith on one parent body.  相似文献   
    96.
    Abstract— Fine‐grained, heavily‐hydrated lithic clasts in the metal‐rich (CB) chondrites Queen Alexandra Range (QUE) 94411 and Hammadah al Hamra 237 and CH chondrites, such as Patuxent Range (PAT) 91546 and Allan Hills (ALH) 85085, are mineralogically similar suggesting genetic relationship between these meteorites. These clasts contain no anhydrous silicates and consist of framboidal and platelet magnetite, prismatic sulfides (pentlandite and pyrrhotite), and Fe‐Mn‐Mg‐bearing Ca‐carbonates set in a phyllosilicate‐rich matrix. Two types of phyllosilicates were identified: serpentine, with basal spacing of ?0.73 nm, and saponite, with basal spacings of about 1.1–1.2 nm. Chondrules and FeNi‐metal grains in CB and CH chondrites are believed to have formed at high temperature (>1300 K) by condensation in a solar nebula region that experienced complete vaporization. The absence of aqueous alteration of chondrules and metal grains in CB and CH chondrites indicates that the clasts experienced hydration in an asteroidal setting prior to incorporation into the CH and CB parent bodies. The hydrated clasts were either incorporated during regolith gardening or accreted together with chondrules and FeNi‐metal grains after these high‐temperature components had been transported from their hot formation region to a much colder region of the solar nebula.  相似文献   
    97.
    Tritschler  A.  Schmidt  W.  Langhans  K.  Kentischer  T. 《Solar physics》2002,211(1-2):17-29
    We present the characteristics and demonstrate the performance of the Triple Etalon SOlar Spectrometer (TESOS) operated at the German Vacuum Tower Telescope (VTT) on Tenerife. The Fabry–Pérot interferometer TESOS is ideally suited for precise measurements of photospheric and chromospheric motion. Installed in 1997 and equipped with two etalons, TESOS has recently been completed with a third etalon and upgraded with two high-speed, backside-illuminated CCD cameras. The image scale of 0.089 arc sec pixel–1 is adapted to the resolution of the telescope. The improved system enables frame rates up to 5 frames per second. The spectral resolution of 300000 allows for spectral diagnostics of weak photospheric lines, including individual CH-lines within the G-band at 430.6 nm.  相似文献   
    98.
    Abstract— Elephant Moraine (EET) A79001 is the only Martian meteorite that consists of both an olivine‐phyric shergottite (lithology A) and a basaltic shergottite (lithology B). The presence of these lithologies in one rock has previously been ascribed to mixing processes (either magmatic or impact‐induced). Here we present data regarding phase changes across the contact between the lithologies. These data show that the contact is gradational and suggest that it is a primary igneous feature consistent with crystallization of a single cooling magma. We present a model to establish a petrogenetic connection between an olivine‐phyric and a basaltic shergottite through differentiation. The model involves the shallow or surface emplacement of a magma that contained pre‐eruptive solids (phenocrysts and minor xenocrysts). Subsequent differentiation via crystal settling and in situ crystallization (Langmuir 1989) resulted in a layered sequence of lithology A overlain by lithology B, with gradations in modal abundance of maskelynite (increasing from A to B) and pigeonite/maskelynite (decreasing from A to B), and a gradational change in pattern of pyroxene zonation (zones of magnesian augite separating magnesian and ferroan pigeonite appear and thicken into B) across the contact. A pigeonite phenocryst‐bearing zone near the contact in lithology B appears to be intermediate between lithology A and the bulk of lithology B (which resembles basaltic shergottite Queen Alexandra Range [QUE] 94201). Re‐examination of Sr isotopic compositions in lithology A and across the contact is required to test and constrain the model.  相似文献   
    99.
    The Beaver-Harrison, Utah chondrite (find July 24, 1979), a single, shock-veined stone of 925 grams, consists of major olivine (Fa25.0), low-Ca pyroxene (En77.3Fs21.1Wo1.6) and metallic nickel-iron; minor troilite and plagioclase (Ab82.6An11.1Or6.3), accessory high-Ca pyroxene (En47.0Fs8.5Wo44.5), chromite (Cm8.7Sp10.6Uv9.4Pc0.6Hc0.7), chlorapatite and whitlockite; and hydrous ferric oxide of terrestrial weathering origin. Mineral compositions indicate L-group classification, and homogeneity of minerals, highly recrystallized texture and presence of clear plagioclase suggest that the meteorite belongs to petrologic type 6.  相似文献   
    100.
    Analyses of Martian surface soil by Viking and Earth-based telescopes have been interpreted as indicating a regolith dominated by the weathering products of mafic or ultramafic rocks. Basaltic glass has previously been proposed as a more likely precursor than crystalline rock, given the low efficiency of surface weathering under present Martian conditions. On Earth large volumes of basaltic glass formed by quenching of magma by water. A similar interaction, between magma and ground ice, may have been a common occurrence on Mars. On the basis of this scenario palagonite, the alteration product of basaltic sideromelane glass, was studied as a possible analog to Martian soil. Samples from Iceland, Alaska, Antarctica, Hawaii, and the desert of New Mexico and Mexico were examined by optical and scanning electron microscopy, electron microprobe analysis, X-ray diffraction, spectrophotometry, and magnetic and thermogravimetric analysis. We suggest that palagonite is a good analog to the surface soil of Mars in chemical composition, particle size, spectral signature, and magnetic properties. Our model for the formation of fine-grained Martian surface soil begins with eruptions of basaltic magma through ground ice, forming deposits of glassy tuff. Individual glass shards are then altered by low-temperature hydrothermal systems to palagonitic material. Dehydration and aeolian abrasion strip the alteration rinds from the glass, and wind storms distribute the silt-sized palagonitic fragments in a planet-wide deposit.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号