首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26570篇
  免费   243篇
  国内免费   962篇
测绘学   1606篇
大气科学   2226篇
地球物理   4968篇
地质学   12451篇
海洋学   1129篇
天文学   1929篇
综合类   2193篇
自然地理   1273篇
  2023年   16篇
  2022年   53篇
  2021年   63篇
  2020年   66篇
  2019年   68篇
  2018年   4841篇
  2017年   4111篇
  2016年   2755篇
  2015年   359篇
  2014年   282篇
  2013年   279篇
  2012年   1121篇
  2011年   2819篇
  2010年   2099篇
  2009年   2394篇
  2008年   1972篇
  2007年   2406篇
  2006年   121篇
  2005年   240篇
  2004年   439篇
  2003年   433篇
  2002年   272篇
  2001年   63篇
  2000年   79篇
  1999年   31篇
  1998年   35篇
  1997年   16篇
  1996年   12篇
  1995年   10篇
  1994年   21篇
  1993年   17篇
  1992年   8篇
  1991年   24篇
  1990年   18篇
  1989年   14篇
  1988年   12篇
  1987年   18篇
  1986年   16篇
  1985年   19篇
  1984年   13篇
  1982年   9篇
  1981年   26篇
  1980年   24篇
  1979年   8篇
  1976年   9篇
  1975年   6篇
  1974年   11篇
  1972年   8篇
  1971年   5篇
  1969年   5篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
151.
Summary The equations of elasticity, electromagnetic equations of Maxwell have been applied to investigate the longitudinal vibration of a partly homogenous, partly inhomogeneous elastic bar permeated by a magnetic field.  相似文献   
152.
Rock-magnetic measurements along with grain size, acid-insoluble residue (AIR), organic carbon (OC), CaCO3 and δ18O of the planktonic foraminifers of the sediments were determined for 15 gravity cores recovered from the western continental margin of India. Magnetic susceptibility (MS) values in the surficial sediments reflect the land-derived input and, in general, are the highest in terrigenous sediment-dominated sections of the cores off Saurashtra–Ratnagiri, followed by the sediments off Indus–Gulf of Kachchh and then Mangalore–Cape Comorin.

The down-core variations in mineral magnetic parameters reveal that the glacial sediments off the Indus are characterized by low MS values/S-ratios associated with high AIR-content, low OC/CaCO3 contents and relatively high δ18O values, while those off SW India are characterized by low MS values/high S-ratio% associated with low AIR content, and relatively high OC, CaCO3 and δ18O values. Conversely, the Early Holocene sediments of all cores are characterized by high MS values/S-ratio% associated with high AIR content, low OC, CaCO3 contents and gradually decreased δ18O values. These results imply that during the Last Glacial Maximum (LGM), the cores off northwestern India received abundant continental supply leading to the predominance of eolian/fluvial sedimentation. In the SW region the influence of hinterland flux is less evident during this period, but convective mixing associated with the NE monsoon resulted in increased productivity. During the early Holocene intense SW monsoon conditions resulted in high precipitation on land, which in turn contributed increased AIR content/MS values in the continental margin sediments. A shallow water core off Kochi further suggests that the intense SW monsoon conditions prevailed until about 5 ka. The late Holocene organic-rich sediments of the SW margin of India were, however, subjected to early diagenesis at different intervals in the cores. Therefore, caution is needed when interpreting regional climatic change from down-core changes in sediment magnetic properties.  相似文献   

153.
In most design applications such as alignment of the berthing structure and breakwater alignment, it becomes necessary to determine the direction of design wave. There are two different approaches to determine wave direction. One involves the use of first order Fourier coefficients (mean wave direction) while the other uses second order Fourier coefficients (principal wave direction). Both the average wave direction over the entire frequency range (0.03–0.58 Hz) and the direction corresponding to the peak frequency are used in practice. In the present study, comparison is made on wave directions estimated based on first and second order Fourier coefficients using data collected at four locations in the west and east coasts of India. Study shows that at all locations, the mean and principal wave directions for frequencies ranging from 0.07 to 0.25 Hz (±0.5 times peak frequency) co-vary with a correlation coefficient of 0.99 but at lower and higher frequencies, difference between the parameters is large. Average difference between the mean wave direction at peak frequency and the average over the frequency related to spectral energy more than 20% of maximum value is less, around 13°. Study shows that average difference in the sea and swell directions is around 39°.  相似文献   
154.
Bathymetric, 9.5-kHz long-range sidescan sonar (OKEAN), seismic reflection and sediment-core data are used in the analysis of two tectonic troughs south of Crete, Eastern Mediterranean Sea. Here, up to 1.2 s two-way travel time (TWTT) of strata have accumulated since the Middle Miocene in association with extension in the South Aegean region. The study area comprises >100-km- long by >25-km-wide basins filled by sediments subdivided into two seismic units: (1) an upper Unit 1 deposited in sub-basins which follow the present-day configuration of the southern Cretan margin; (2) a basal Unit 2, more than 500 ms (TWTT) thick, accumulated in deeper half-graben/grabens distinct from the present-day depocentres. Both units overlap a locally stratified Unit 3 comprising the pre-Neogene core complex of Crete and Gavdos. In this work, the interpreted seismic units are correlated with the onshore stratigraphy, demonstrating that denudation processes occurring on Crete and Gavdos in response to major tectonic events have been responsible for high sedimentation rates along the proximal southern Cretan margin. Consequently, topographically confined sedimentary units have been deposited south of Crete in the last 12 Ma, including turbidites and other mass-flow deposits fed by evolving transverse and axial channel systems. Surface processes controlling facies distribution include the direct inflow of sediment from alluvial-fan systems and incising mountain rivers onto the Cretan slope, where significant sediment instability processes occur at present. In this setting, seismic profiles reveal eight different types of stratigraphic contacts on basin-margin highs, and basinal areas show evidence of halokinesis and/or fluid escape. The acquired data also show that significant changes to the margin’s configuration occurred in association with the post-Alpine tectonic and eustatic episodes affecting the Eastern Mediterranean.  相似文献   
155.
This article describes the impact of satellite altimeter data on the simulations of sea level variability (SLV) by a nonlinear reduced gravity model of the entire Indian Ocean. The model has been forced by 6-hourly analyzed wind stress data containing SSM/I observations and has been able to produce realistic circulation features. However, SLV values observed by Topex/Poseidon altimeter do not fit these simulations because of imperfect initial data. Hence an attempt has been made to initialize the model using altimeter data. The initialized model-generated SLVvalues have been compared with SLV derived by altimeter for monsoon as well as nonmonsoon months of 1996. Experimental runs have been performed for 10 days, 20 days, and one month. It has been found that the initialized model results on the final day of these experiments are in very good agreement with altimeter data of the same day. It is thus possible, in principle, to hindcast and forecast sea level variations in the time scale of 10 days to one month with the availability of good quality wind data for forcing the model and altimeter observations of sea level for initializing it.  相似文献   
156.
The role of similitude in scaled simulation of major installation operations of offshore steel jackets, namely, loadout, launching and upending has been studied. The physical modelling can be looked upon both as an adjunct to numerical modelling using computers and also as an independent tool of investigation. The problems of design of models and of experiments are discussed and the prediction equations based on similitude are given.  相似文献   
157.
This paper examines the mechanism controlling the short time-scale variation of sea ice cover over the Southern Ocean. Sea ice concentration and ice velocity datasets derived from images of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) are employed to reveal this mechanism. The contribution of both dynamic and thermodynamic processes to the change in ice edge location is examined by comparing the meridional velocity of ice edge displacement and sea ice drift. In the winter expansion phase, the thermodynamic process of new ice production off the ice edge plays an important role in daily advances of ice cover, whereas daily retreats are mostly due to southward ice drift. On the other hand, both advance and retreat of ice edges in the spring contraction phase are mostly caused by the dynamic process of the ice drift. Based on the above mechanism and the linear relation between the degree of ice production at the ice edge and northward wind speed, the seasonal advance of ice cover can be roughly reproduced using the meridional velocity of ice drift at the ice edge.  相似文献   
158.
Two distinct series of slumps deform the upper part of the sedimentary sequence along the continental margin of the Levant. One series is found along the base of the continental slope, where it overlies the disrupted eastern edge of the Messinian evaporites. The second series of slumps transects the continental margin from the shelf break to the Levant Basin. It seemed that the two series were triggered by two unrelated, though contemporaneous, processes. The shore-parallel slumps were initiated by basinwards flow of the Messinian salt, that carried along the overlying Plio-Quaternary sediments. Seawater that percolated along the detachment faults dissolved the underlying salt to form distinctly disrupted structures. The slope-normal slumps are located on top of large canyons that cut into the pre-Messinian sedimentary rocks. A layer of salt is found in the canyons, and the Plio-Quaternary sediments were deposited on that layer. The slumps are bounded by large, NW-trending faults where post-Messinian faulted offset was measured. We presume that the flow of the salt in the canyons also drives the slope-normal slumps. Thus thin-skinned halokynetic processes generated the composite post-Tortonian structural patterns of the Levant margin. The Phoenician Structures are a prime example of the collapse of a distal continental margin due to the dissolution of a massive salt layer.  相似文献   
159.
160.
Seasonal evolution of surface mixed layer in the Northern Arabian Sea (NAS) between 17° N–20.5° N and 59° E-69° E was observed by using Argo float daily data for about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by 2.3 °C and ocean gained an average of 99.8 Wm−2. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low ∼18 Wm−2 and SST dropped by 3.4 °C. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by 1.5 °C and ocean lost an average of 52.5 Wm−2. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively high correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号