首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   10篇
  国内免费   3篇
测绘学   15篇
大气科学   8篇
地球物理   57篇
地质学   39篇
海洋学   8篇
天文学   38篇
综合类   3篇
自然地理   20篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2020年   8篇
  2019年   3篇
  2018年   10篇
  2017年   4篇
  2016年   9篇
  2015年   6篇
  2014年   10篇
  2013年   12篇
  2012年   5篇
  2011年   10篇
  2010年   11篇
  2009年   18篇
  2008年   8篇
  2007年   6篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   9篇
  2002年   5篇
  2001年   8篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
排序方式: 共有188条查询结果,搜索用时 870 毫秒
181.
Douala city, located in the littoral province of Cameroon, receives abundant rainfall quantities due to its geographical position in the Gulf of Guinea and bears considerable surface water and groundwater resources. Due to socioeconomic development and rapid demographic growth in the city and its consequences of unplanned urbanization and improper sanitation system, these water resources are poorly protected and managed. Streams in the Wouri watershed receive large amounts of wastewater discharge, and hundreds of boreholes have been drilled into the aquifer system without any management plan. A detailed hydrodynamic and hydrogeochemistry study in Douala town and its environs was conducted to get a better insight into the groundwater system functioning in order to provide information for the sustainable management and protection of the groundwater resource. Two field campaigns were carried out with 187 samples collected and analyzed for major ions, stable isotopes (18O, 2H), and tritium 3H. The results of the sampling have shown that the weathering of silicate minerals is the dominant geochemical process affecting groundwater chemistry in this system. However, acid rainfall in the humid climate has also caused carbonate mineral dissolution, amorphous silica deposition, and ion exchange reactions to occur in aquifers in the region. The various water types identified were categorized into four major clusters C1 to C4, based on the major ion composition and the local hydrogeological conditions. Environmental isotope data reveal that modern-to-submodern waters occur in the phreatic Quaternary/Mio-Pliocene and Oligocene/Upper Eocene aquifers, respectively. These results corroborate with the conceptual model built where modern groundwater types indicated silicate mineral weathering and calcite dissolution (C1 and C2), whereas submodern groundwater mostly showed silica deposition, ion exchange, and, to a lesser extent, carbonate mineral dissolution (C3 and C4). This improved understanding of the aquifer system functioning is essential to provide a reasonable basis for effective control measures and sustainable water management.  相似文献   
182.
183.
Matrix glass and melt inclusions in phenocrysts from pantellerite lavas of the Boseti volcanic complex, Ethiopia, record extreme fractionation of peralkaline silicic magma, with Al2O3 contents as low as 2.3?wt.%, FeO* contents up to 17?wt.% and SiO2 contents ~65?wt.%. The new data, and published data for natural and experimental glasses, suggest that the effective minimum composition for peralkaline silicic magmas has ~5?wt.% Al2O3, 13?wt.% FeO* and 66?±?2?wt.% SiO2. The dominant fractionating assemblage is alkali feldspar?+?fayalite?+?hedenbergite?+?oxides?±?quartz. Feldspar – melt relationships indicate that the feldspar is close to the minimum on the albite-orthoclase solid solution loop through the entire crystallization history. There is petrographic, mineralogical and geochemical evidence that magma mixing may have been a common process in the Boseti rhyolites.  相似文献   
184.
The Dolní Věstonice–Pavlov–Milovice area (Czech Republic) on the slopes of the Pavlov Hills provides an opportunity for correlating the geomorphology of the Dyje River valley with Gravettian settlement patterns. Although the sites vary in size and complexity, they create a regular chain of strategic locations at elevations between 200 m and 240 m asl. In 2009, a road collapsed into deserted cellars inside the village of Milovice and revealed a complex of archaeological layers deep within loess, at an elevation of only 175 m asl. This paper presents an analysis of this atypical archaeological site location and compares the results with the other sites. We argue that this location allowed direct contact with mammoth herds concentrated on the floodplain, while the aquatic environment offered possibilities for gathering plants and fishing. This site represents a new aspect of organized settlement, hunting strategies, and short‐distance human movements during the Gravettian within this area. © 2011 Wiley Periodicals, Inc.  相似文献   
185.
Surface water optical characteristics, nutrients, and planktonic chlorophyll a concentrations were analyzed in the Cape Fear River (CFR) plume over a 2-year period. CFR discharge during the dry year (109 ± 105 m3s−1) was only 25% of the wet year discharge (429 ± 337 m3s−1). Partitioning the contributions of phytoplankton pigments, non-pigmented particles, and colored dissolved organic matter (CDOM) to the absorption of photosynthetically active radiation (PAR) indicated that CDOM was the dominant contributor to PAR absorption. Particulate absorption was relatively greater during the dry year. Pigment absorption was minor and varied little among stations or between years. Chlorophyll a concentrations were reduced at the most plume-influenced stations during the wet year, despite lower turbidity and higher nitrate concentrations. Ammonium and orthophosphate concentrations were not different between years. CDOM absorption [a CDOM (412)] ranged from 0.05 to 8.25 m−1 with highest values occurring near the CFR mouth. Our results suggest that for coastal ecosystems with significant blackwater river inputs, CDOM may exert a major limiting influence over near-shore primary production.  相似文献   
186.
 Two multitracer tests performed in one of the major cross-fault zones of the Lange Bramke basin (Harz Mountains, Germany) confirm the dominant role of the fault zone in groundwater flow and solute transport. Tracers having different coefficients of molecular diffusion (deuterium, bromide, uranine, and eosine) yielded breakthrough curves that can only be explained by a model that couples the advective–dispersive transport in the fractures with the molecular diffusion exchange in the matrix. For the scale of the tests (maximum distance of 225 m), an approximation was used in which the influence of adjacent fractures is neglected. That model yielded nearly the same rock and transport parameters for each tracer, which means that the single-fracture approximation is acceptable and that matrix diffusion plays an important role. The hydraulic conductivity of the fault zone obtained from the tracer tests is about 1.5×10–2 m/s, whereas the regional hydraulic conductivity of the fractured rock mass is about 3×10–7 m/s, as estimated from the tritium age and the matrix porosity of about 2%. These values show that the hydraulic conductivity along the fault is several orders of magnitude larger than that of the remaining fractured part of the aquifer, which confirms the dominant role of the fault zones as collectors of water and conductors of fast flow. Received, April 1997 Revised, January 1998, August 1998 Accepted, August 1998  相似文献   
187.
Geochemical analysis of surface sediment samples collected in 2005 and 2006 was used to evaluate the potential sources of the organic matter present in sediments of southeast Poland's Solina Reservoir.Statistical analysis of sediment variables(carbon to nitrogen ratio, and the carbon 13 and nitrogen 15 isotope ratios) determined for the organic fraction indicated significant spatial variability with respect to sources of organic matter. A binary mixing model was developed from literature sources to predict the relative contributions of allochthonous and autochthonous production to sediment organic matter.Autochthonous production was shown to account for 60-75% of bulk sedimentation in the lacustrine parts of the reservoir, near the dam. In contrast, autochthonous production accounted for only 25% of sedimentation in the riverine zone receiving stream inputs. Statistical analysis identified the δ~(15)N of organic matter as the best predictor of the source of organic matter. Multiple regression analysis indicated that two water-quality variables(nitrate and dissolved silica) were significantly related to the δ~(15)N signature of organic matter. This led to a conclusion that limnetic nitrate and dissolved silica concentrations were regulating organic matter production in the Solina Reservoir.  相似文献   
188.
Systematic water sampling for characterization of chromophoric dissolved organic matter (CDOM) in the coastal South Atlantic Bight, was conducted as part of the long term Coastal Ocean Research and Monitoring Program (CORMP). Water samples were collected during a 3.5 year period, from October 2001 until March 2005, in the vicinity of the Cape Fear River (CFR) outlet and in adjacent Onslow Bay (OB). During this study there were two divergent hydrological and meteorological conditions in the CFR drainage area: a severe drought in 2002, followed by the very wet year of 2003. CDOM was characterized optically by the absorption coefficient at 350 nm, the spectral slope coefficient (S), and by Excitation Emission Matrix (EEM) fluorescence. Parallel Factor Analysis (PARAFAC) was used to assess CDOM composition from EEM spectra and six components were identified: three terrestrial humic-like components, one marine humic-like component and two protein-like components. Terrestrial humic-like components contributed most to dissolved organic matter (DOM) fluorescence in the low salinity plume of the CFR. The contribution of terrestrial humic-like components to DOM fluorescence in OB was much smaller than in the CFR plume area. Protein-like components contributed significantly to DOM fluorescence in the coastal ocean of OB and they dominated DOM fluorescence in the Gulf Stream waters. Hydrological conditions during the observation period significantly impacted both concentration and composition of CDOM found in the estuary and coastal ocean. In the CFR plume, there was an order of magnitude difference in CDOM absorption and fluorescence intensity between samples collected during the drought compared to the wet period. During the drought, CDOM in the CFR plume was composed of equal proportions of terrestrial humic-like components (ca. 60% of the total fluorescence intensity) with a significant contribution of proteinaceous substances (ca. 20% of the total fluorescence). During high river flow, CDOM was composed mostly of humic substances (nearly 75% of total fluorescence) with minor contributions by proteinaceous substances. The impact of changes in fresh water discharge patterns on CDOM concentration and composition was also observed in OB, though to a lesser degree.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号