The GISP2 oxygen isotope record, with its high-resolution detail, yields crucial information on past climate change. The glacial δ18O oscillations of the GISP2 core, with their very fast onsets, are templates of a prototype oscillation of variable duration with an amplitude of 3.9‰. The halfway mark of the cold–warm transition is reached in 2 years; the top is reached in 50 years. The δ18O–time gradient of the leading front is about 7.8‰ per 100 yr. After reaching the top, δ18O slowly declines by −0.14‰ per 100 yr. The duration of δ18O decline varies from a couple of centuries for fast oscillations to about 4000 yr for slower ones. The subsequent δ18O downturn during the warm–cold transition has a δ18O–time gradient of −3.2‰ per 100 yr and lasts about 80 yr. 相似文献
ABSTRACTTo effectively manage hydrological drought, there is an urgent need to better understand and evaluate its human drivers. Using the “downstreamness” concept, we assess the role of a reservoir network in the emergence and evolution of droughts in a river basin in Brazil. In our case study, the downstreamness concept shows the effect of a network of reservoirs on the spatial distribution of stored surface water volumes over time. We demonstrate that, as a consequence of meteorological drought and recovery, the distribution of stored volumes became spatially skewed towards upstream locations, which affected the duration and magnitude of hydrological drought both upstream (where drought was alleviated) and downstream (where drought was aggravated). The downstreamness concept thus appears to be a useful entry point for spatiotemporally explicit assessments of hydrological drought and for determining the likelihood of progression from meteorological drought to a human-modified hydrological drought in a basin. 相似文献
In this paper, a three-dimensional semi-idealized model for tidal motion in a tidal estuary of arbitrary shape and bathymetry is presented. This model aims at bridging the gap between idealized and complex models. The vertical profiles of the velocities are obtained analytically in terms of the first-order and the second-order partial derivatives of surface elevation, which itself follows from an elliptic partial differential equation. The surface elevation is computed numerically using the finite element method and its partial derivatives are obtained using various methods. The newly developed semi-idealized model allows for a systematic investigation of the influence of geometry and bathymetry on the tidal motion which was not possible in previously developed idealized models. The new model also retains the flexibility and computational efficiency of previous idealized models, essential for sensitivity analysis. As a first step, the accuracy of the semi-idealized model is investigated. To this end, an extensive comparison is made between the model results of the semi-idealized model and two other idealized models: a width-averaged model and a three-dimensional idealized model. Finally, the semi-idealized model is used to understand the influence of local geometrical effects on the tidal motion in the Ems estuary. The model shows that local convergence and meandering effects can have a significant influence on the tidal motion. Finally, the model is applied to the Ems estuary. The model results agree well with observations and results from a complex numerical model. 相似文献
The effect of tree foliage on sprayer airflow through pear trees in a fruit orchard was studied and modelled in detail. A new three-dimensional (3-D) computational fluid dynamics model that integrates the 3-D canopy architecture with a local closure model to simulate the effect of the stem and branches and leaves of trees separately on airflow was developed. The model was validated with field observations made in an experimental orchard (pcfruit, Sint-Truiden, Belgium) in spring and summer 2008 and was used to investigate the airflow from three air-assisted orchard sprayers (Condor V, Duoprop and AirJet quatt). Velocity magnitudes were measured before and behind leafless and fully-leafed pear canopies across the row while the operating sprayers are passing along the row, and were compared with the simulations. The simulation results predicted the measured values well with all the local relative errors within 20%. The effect of foliar density on airflow from the three air assisted sprayers was manifested by changing the magnitude and direction of the sprayers’ air velocity behind the canopy, especially at the denser regions of the canopy and by changing the pattern of velocity decay horizontally along the jet. The developed methodology will also allow a thorough investigation of atmospheric airflow in canopy structures. 相似文献
Objectives of this work are to investigate effects of pH and ionic strength (IS) on virus transport in saturated soil and to develop a quantitative relationship for these effects. A series of 50-cm column experiments with clean quartz sand under saturated conditions and with pH values of 5, 6, 7, 8, and IS values of 1, 10, and 20 mM were conducted. Bacteriophage PRD1 was used as a model virus. Applying a one-site kinetic model, attachment, detachment, and inactivation rate coefficients were determined from fitting breakthrough curves using the software package Hydrus-1D. Attachment rate coefficients increased with decreasing pH and increasing IS, in agreement with DLVO theory. Sticking efficiencies were calculated from the attachment rate coefficients and used to develop an empirical formula for sticking efficiency as a function of pH and IS. This relationship is applicable under unfavorable conditions for virus attachment. We compared sticking efficiencies predicted by the empirical formula with those from field and column experiments. Within the calibrated range of pH and IS, the predicted and observed sticking efficiencies are in reasonable agreement for bacteriophages PRD1 and MS2. However, the formula significantly overestimates sticking efficiencies for IS higher than 100 mM. In addition, it performs less well for viruses with different surface reactivity than PRD1 and MS2. Effects of pH and IS on detachment and inactivation rate coefficients were also investigated but the experimental results do not allow constraining these parameters with sufficient certainty. 相似文献
Well clogging was studied at an aquifer storage transfer and recovery (ASTR) site used to secure freshwater supply for a flower bulb farm. Tile drainage water (TDW) was collected from a 10-ha parcel, stored in a sandy brackish coastal aquifer via well injection in wet periods, and reused during dry periods. This ASTR application has been susceptible to clogging, as the TDW composition largely exceeded most clogging mitigation guidelines. TDW pretreatment by sand filtration did not cause substantial clogging at a smaller ASR site (2 ha) at the same farm. In the current (10 ha) system, sand filtration was substituted by 40-μm disc filters to lower costs (by 10,000–30,000 Euro) and reduce space (by 50–100 m2). This measure treated TDW insufficiently and injection wells rapidly clogged. Chemical, biological, and physical clogging occurred, as observed from elemental, organic carbon, 16S rRNA, and grain-size distribution analyses of the clogging material. Physical clogging by particles was the main cause, based on the strong relation between injected turbidity load and normalized well injectivity. Periodical backflushing of injection wells improved operation, although the disc filters clogged when the turbidity increased (up to 165 NTU) during a severe rainfall event (44 mm in 3 days). Automated periodical backflushing, together with regulating the maximum turbidity (<20 NTU) of the TDW, protected ASTR operation, but reduced the injected TDW volume by ~20–25%. The studied clogging-prevention measures collectively are only viable as an alternative for sand filtration when the injected volume remains sufficient to secure the farmer’s needs for irrigation.
The production of fresh drinking water from brackish groundwater by reverse osmosis (BWRO) is becoming more attractive, even in temperate climates. For successful application of BWRO, the following approach is advocated: (1) select brackish source groundwater with a large volume and a composition that will yield a concentrate (waste water) with low mineral saturation; (2) maintain the feed water salinity at a constant level by pumping several wells with different salinities; (3) keep the permeate-to-concentrate ratio low, to avoid supersaturation in the concentrate; (4) keep the system anoxic (to avoid oxidation reactions) and pressurized (to prevent formation of gas bubbles); and (5) select a confined aquifer for deep well injection where groundwater quality is inferior to the membrane concentrate. This approach is being tested at two BWRO pilot plants in the Netherlands. Research issues are the pumping of a stable brackish source water, the reverse osmosis system performance, membrane fouling, quality changes in the target aquifer as a result of concentrate disposal, and clogging of the injection well. First evaluations of the membrane concentrate indicate that it is crucial to understand the kinetics of mineral precipitation on the membranes, in the injection wells, and in the target aquifer. 相似文献
We tested the suitability of the fine‐grained quartz (4–11 μm) Optical Stimulated Luminescence (OSL) and thermally‐transferred OSL (TT‐OSL), and the fine‐grained polymineral (4–11 μm) post‐infrared IRSL (post‐IR IRSL or pIRIR) signals for dating samples from aeolian‐lacustrine deposits from the Xiaochangliang archaeological profile in the Nihewan Basin, China; these deposits include material from the Jaramillo subchron (c. 1.0 Ma). In the upper aeolian section, the OSL and pIRIR290 ages are consistent with each other, and show that the upper 8.8 m was deposited between c. 0.3 and c. 140 ka. The luminescence ages indicate a major discontinuity in deposition between the aeolian and the older lacustrine deposits. Below this hiatus at 9.4 m (i.e. in the lacustrine sediments) all three signals are found to be in field saturation (no further systematic increase in burial dose with depth) despite the TT‐OSL signal (apparent mean burial dose ~880 Gy) being well below saturation on the laboratory growth curve. This is in contrast to the pIRIR290 signal, which saturates in the field at a level consistent with laboratory saturation. This results in a practical upper limit to the measured burial dose of ~900 Gy (2D0). Thus for the TT‐OSL and pIRIR290 signals, the upper limits for dating lacustrine deposits are <260 ka and c. 240 ka, respectively. These results have major implications for the appropriate future application of these signals. The ages of our lacustrine samples cannot be regarded as necessarily accurate ones; nevertheless, these ages provide the first long series absolute chronology for study of local palaeolithic and geomorphic evolution history aside from the magnetostratigraphical results available before this research. 相似文献