首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   11篇
  国内免费   1篇
测绘学   10篇
大气科学   24篇
地球物理   110篇
地质学   85篇
海洋学   53篇
天文学   143篇
自然地理   64篇
  2021年   5篇
  2019年   4篇
  2018年   8篇
  2017年   5篇
  2016年   9篇
  2015年   7篇
  2014年   6篇
  2013年   23篇
  2012年   11篇
  2011年   13篇
  2010年   15篇
  2009年   16篇
  2008年   15篇
  2007年   15篇
  2006年   13篇
  2005年   20篇
  2004年   15篇
  2003年   19篇
  2002年   16篇
  2001年   13篇
  2000年   14篇
  1999年   6篇
  1998年   5篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   8篇
  1992年   5篇
  1990年   5篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   12篇
  1984年   13篇
  1983年   12篇
  1982年   6篇
  1981年   12篇
  1980年   4篇
  1979年   6篇
  1978年   8篇
  1977年   12篇
  1976年   10篇
  1975年   9篇
  1974年   6篇
  1973年   3篇
  1972年   4篇
  1970年   4篇
  1965年   3篇
排序方式: 共有489条查询结果,搜索用时 234 毫秒
91.
ABSTRACT

The Pelona–Orocopia–Rand and related schists of southern California are an archetypal example of an exhumed shallow subduction complex. ‘The schist’ comprises mainly trench materials underthust beneath continental arc rocks during Late Cretaceous–early Cenozoic collision of one or more oceanic plateaux with southern California. The arc-on-trench relationship, without intervening mantle or lowermost crust, implies that significant subduction erosion accompanied shallow subduction. Upsection increases in metamorphic grade (~150 ± 100°C/km) and spatial variations in age and peak temperature provide an ~50 million year long record of tectonic underplating within a cooling system. Evidence for palaeoseismic events in earliest formed and hottest (locally transitional granulite grade) schists provides a possible field-based record of episodic tremor and slow slip events such as detected in several modern shallow subduction zones. Structural ascent of the schist was achieved in distinct Late Cretaceous–early Eocene and late Oligocene–early Miocene extensional pulses, the first during collapse of gravitationally unstable upper plate assemblages and accompanied by trench-directed (top-NE) lower plate extrusion and the second corresponding temporally, spatially, and in character with core complex formation in the SW United States. The line between schist and core complex belts is blurred by the recent discovery of schist within 40 km of the nearest core complex and containing synkinematic Miocene intrusions, a hallmark of SW U.S. core complexes. The history of schist assembly, metamorphism, and exhumation provides the most complete field-based record of thermo-mechanical processes, subduction erosion and tectonic underplating in particular, that operated during a shallow subduction event. Future cross-disciplinary investigations of, and comparisons between, the schist and other possible ancient (e.g. Swakane gneiss, Sanbagawa belt, Qiangtang terrane) and modern (e.g. Cascadia, SW Japan, central Mexico, Chile) shallow subduction zones will yield new insights into the tectonic and petrologic processes that operate within such systems.  相似文献   
92.
Neolithic artifacts made of nephrite, □Ca2(Fe,Mg)5Si8O22(OH)2, are found at prehistoric settlements in Bulgaria. This study investigates these objects based on particle induced X‐ray emission using a scanning nuclear microprobe (micro‐PIXE technique). Seven nephrite artifacts from the Neolithic sites of Kovachevo, Bulgarchevo and Galabnik in southwest Bulgaria were analyzed to quantify their composition and to establish if a correlation exists between the distribution of major and trace elements, color, impurities, and texture. The nephrite artifacts are tremolite in composition, with a proposed ultrabasic origin. Based on the geochemical data obtained by micro‐PIXE, we divide the artifacts into Group 1 objects from the Kovachevo site and Group 2 objects from the Galabnik and Bulgarchevo sites. The analytical data and microprobe analyses are compared with geochemical data of nephrite from across the globe. The results are in a good agreement with previous electron microprobe and electron paramagnetic resonance (EPR) spectroscopy data. Our study provides a better understanding of the mineralogy and geochemistry of nephrite artifacts and helps to address questions regarding origin and the distribution of such materials in Bulgaria and other Balkan countries.  相似文献   
93.
94.
The distributions of iodate and total inorganic iodine concentrations in the waters on the Texas?CLouisiana shelf in April, June, and August 2004 are described. Iodine?Csalinity graphs show three-end-member mixing involving onshore and offshore surface waters and deep offshore water. The April survey showed simple mixing on the surface, but in the later surveys, iodate concentrations were often much lower than predicted by the mixing curve while those for total inorganic iodine were higher. This demonstrated both iodate reduction in the water and iodide addition, although individual samples did not show equivalent speciation changes. Hydrographically, the system consists of the estuaries of the Mississippi and Atchafalaya rivers as they spill onto the shelf. The waters are stratified seasonally by a robust halocline, leading to hypoxia in the bottom waters from the combined effect of restricted downward diffusion of oxygen and the sinking of the luxuriant growth of phytoplankton induced by riverine nutrient supply. The distributions of iodate and total inorganic iodine are, therefore, interpreted in terms of water?Csediment interaction as the shelf shoals to the north.  相似文献   
95.
Faunal communities at the deep-sea floor mainly rely on the downward transport of particulate organic material for energy, which can come in many forms, ranging from phytodetritus to whale carcasses. Recently, studies have shown that the deep-sea floor may also be subsidized by fluxes of gelatinous material to the benthos. The deep-sea scyphozoan medusa Periphylla periphylla is common in many deep-sea fjords in Norway and recent investigations in Lurefjorden in western Norway suggest that the biomass of this jellyfish currently exceeds 50000 t here. To quantify the presence of dead P. periphylla jellyfish falls (hereafter termed jelly-falls) at the deep seafloor and the standing stock of carbon (C) and nitrogen (N) deposited on the seafloor by this species, we made photographic transects of the seafloor, using a ‘Yo-Yo’ camera system during an opportunistic sampling campaign in March 2011. Of 218 seafloor photographs taken, jelly-falls were present in five, which resulted in a total jelly-fall abundance of 1×10-2 jelly-falls m−2 over the entire area surveyed. Summed over the entire area of seafloor photographed, 1×10-2 jelly-falls m−2 was equivalent to a C- and N-biomass of 13 mg C m−2 and 2 mg N m−2. The contribution of each jelly-fall to the C- and N-amount of the sediment in the immediate vicinity of each fall (i.e. to sediment in each 3.02 m2 image in which jelly-falls were observed) was estimated to be 568±84 mg C m−2 and 88±13 mg N m−2. The only megafaunal taxon observed around or on top of the jelly-falls was caridean shrimp (14±5 individuals jelly-fall−1), and shrimp abundance was significantly greater in photographs in which a jelly-fall was found (14±5 individuals image−1) compared to photographs in which no jelly-falls were observed (1.4±0.7 individuals image−1). These observations indicate that jelly-falls in this fjord can enhance the sedimentary C- and N-amount at the deep-sea floor and may provide nutrition to benthic and demersal faunas in this environment. However, organic enrichment from the jelly-falls found in this single sampling event and associated disturbance was highly localized.  相似文献   
96.
The UK is committed to meeting a series of ‘high-level marine objectives’ which are required to satisfy national obligations and to meet international commitments for the marine environment. There are more than 16 such international high-level policy driven obligations and commitments, together with more than 18 European and more than 12 of national origin. In the UK, there is an assumption that the current and planned monitoring will provide evidence to demonstrate achievement against these high-level objectives.  相似文献   
97.
The atmospheric detonation of a 17 m-asteroid above Chelyabinsk, Russia on 2013 February 15 shows that even small asteroids can cause extensive damage. Earth-based telescopes have found smaller harmless objects, such as 2008 TC3, a 4 m-asteroid that was discovered 20h before it exploded over northeastern Sudan (Jenniskens, 2009). 2008 TC3 remains the only asteroid discovered before it hit Earth because it approached Earth from the night side, where it was observed by large telescopes searching for near-Earth objects (NEO’s). The larger object that exploded over Chelyabinsk approached Earth from the day side, from too close to the Sun to be detected from Earth. A sizeable telescope in an orbit about the Sun-Earth L1 (SE-L1) libration point could find objects like the “Chelyabinsk” asteroid approaching approximately from the line of sight to the Sun about a day before Earth closest approach. Such a system would have the astrometric accuracy needed to determine the time and impact zone for a NEO on a collision course. This would give at least several hours, and usually 2–4 days, to take protective measures, rather than the approximately two-minute interval between the flash and shock wave arrival that occurred in Chelyabinsk. A perhaps even more important reason for providing warning of these events, even smaller harmless ones that explode high in the atmosphere with the force of an atomic bomb, is to prevent mistaking such an event for a nuclear attack that could trigger a devastating nuclear war. A concept using a space telescope similar to that needed for an SE-L1 monitoring satellite, is already conceived by the B612 Foundation, whose planned Sentinel Space Telescope could find nearly all 140 m and larger NEO’s, including those in orbits mostly inside the Earth’s orbit that are hard to find with Earth-based telescopes, from a Venus-like orbit (Lu, 2013). Few modifications would be needed to the Sentinel Space Telescope to operate in a SE-L1 orbit, 0.01 AU from Earth towards the Sun, to find most asteroids larger than about 5 meters that approach the Earth from the solar direction. The spacecraft would scan 165 square degrees of the sky around the Earth every hour, finding asteroids when they are brightest (small phase angle) as they approach Earth. We will undertake Monte Carlo studies to see what fraction of asteroids 5 m and larger approaching from the Sun might be found by such a mission, and how much warning time might typically be expected. Also, we will check the overall coverage for all Earth-approaching NEO’s, including ground-based observations and observations by the recently-launched NEOSSat, which may best fill any gaps in coverage between that provided by an SE-L1 telescope and ground-based surveys. Many of the objects as large as 50 m, like the one that created Meteor Crater in Arizona, will not be found by current NEO surveys, while they would usually be seen by this possible mission even if they approached from the direction of the Sun. We should give better warning for future “Bolts out of the blue.”  相似文献   
98.
99.
Quantifying the potential ash fall hazards from re-awakening volcanoes is a topic of great interest. While methods for calculating the probability of eruptions, and for numerical simulation of tephra dispersal and fallout exist, event records at most volcanoes that re-awaken sporadically on decadal to millennial cycles are inadequate to develop rigorous forecasts of occurrence, much less eruptive volume. Here we demonstrate a method by which eruption records from radiocarbon-dated sediment cores can be used to derive forecasting models for ash fall impacts on electrical infrastructure. Our method is illustrated by an example from the Taranaki region of New Zealand. Radiocarbon dates, expressed as years before present (B.P.), are used to define an age-depth model, classifying eruption ages (with associated errors) for a circa 1500–10 500 year B.P. record at Mt. Taranaki (New Zealand). In addition, data describing the youngest 1500 years of eruption activity is obtained from directly dated proximal deposits. Absence of trend and apparent independence in eruption intervals is consistent with a renewal model using a mix of Weibulls distributions, which was used to generate probabilistic forecasts of eruption recurrence. After establishing that interval length and tephra thickness were independent in the record, a thickness–volume relationship (from [Rhoades, D.A., Dowrick, D.J., Wilson, C.J.N., 2002. Volcanic hazard in New Zealand: Scaling and attenuation relations for tephra fall deposits from Taupo volcano. Nat. Hazards, 26:147–174]) was inverted to provide a frequency–volume relationship for eruptions. Monte Carlo simulation of the thickness–volume relationship was then used to produce probable ash fall thicknesses at any chosen site. Several critical electrical infrastructure sites in the Taranaki Region were analysed. This region, being the only gas and condensate-producing area in New Zealand, is of national economic importance, with activities in and around the area depending on uninterrupted power supplies. Forecasts of critical ash thicknesses (1 mm wet and 2 mm dry) that may cause short-circuiting, surges or power shutdowns in substations show that the annual probabilities of serious impact are between ~ 0.5% and 27% over a 50 year period. It was also found that while large eruptions with high ash plumes tend to affect “expected” areas in relation to prevailing winds, the direction impacts of small ash falls are far less predictable. In the Taranaki case study, areas out of normal downwind directions, but close to the volcano, have probabilities of impact for critical thicknesses of 1–2 mm of around half to 60% of those in downwind directions and therefore should not be overlooked in hazard analysis. Through this method we are able to definitively show that the potential ash fall hazard to electrical infrastructure in this area is low in comparison to other natural threats, and provide a quantitative measure for use in risk analysis and budget prioritisation for hazard mitigation measures.  相似文献   
100.
Talat  Ahmad  Kabita C.  Longjam  Baishali  Fouzdar  Mike J.  Bickle  Hazel J.  Chapman 《Island Arc》2009,18(1):155-174
The Sakoli Mobile Belt comprises bimodal volcanic rocks that include metabasalt, rhyolite, tuffs, and epiclastic rocks with metapelites, quartzite, arkose, conglomerate, and banded iron formation (BIF). Mafic volcanic rocks are tholeiitic to quartz‐tholeiitic with normative quartz and hypersthene. SiO2 shows a large compositional gap between the basic and acidic volcanics, depicting their bimodal nature. Both the volcanics have distinct geochemical trends but display some similarity in terms of enriched light rare earth element–large ion lithophile element characteristics with positive anomalies for U, Pb, and Th and distinct negative anomalies for Nb, P, and Ti. These characteristics are typical of continental rift volcanism. Both the volcanic rocks show strong negative Sr and Eu anomalies indicating fractionation of plagioclases and K‐feldspars, respectively. The high Fe/Mg ratios for the basic rocks indicate their evolved nature. Whole rock Sm–Nd isochrons for the acidic volcanic rocks indicate an age of crystallization for these volcanic rocks at about 1675 ± 180 Ma (initial 143Nd/144Nd = 0.51017 ± 0.00017, mean square weighted deviate [MSWD] = 1.6). The εNdt (t = 2000 Ma) varies between ?0.19 and +2.22 for the basic volcanic rock and between ?2.85 and ?4.29 for the acidic volcanic rocks. Depleted mantle model ages vary from 2000 to 2275 Ma for the basic and from 2426 to 2777 Ma for the acidic volcanic rocks, respectively. These model ages indicate that protoliths for the acidic volcanic rocks probably had a much longer crustal residence time. Predominantly basaltic magma erupted during the deposition of the Dhabetekri Formation and part of it pooled at crustal or shallower subcrustal levels that probably triggered partial melting to generate the acidic magma. The influence of basic magma on the genesis of acidic magma is indicated by the higher Ni and Cr abundance at the observed silica levels of the acidic magma. A subsequent pulse of basic magma, which became crustally contaminated, erupted as minor component along with the dominantly acidic volcanics during the deposition of the Bhiwapur Formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号