首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
测绘学   1篇
地球物理   3篇
地质学   10篇
海洋学   4篇
天文学   34篇
自然地理   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1992年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1976年   2篇
  1975年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
41.
Seasonal dynamics of Zostera noltii was studied during 1984 in Arcachon Bay, France. In this Bay, Z. noltii colonizes 70 km2, i.e. approximately 50% of the total area, while Z. marina occupies only 4 km2. Densities and length of vegetative and generative shoots and above-ground and below-ground biomasses were monitored in four meadows which differed according to their location in the Bay, tidal level and sediment composition. Three of these meadows were homogeneous, well-established beds whilst the fourth was under colonization and patchy. Shoot densities and maximal below-ground biomass were lower in the inner silty seagrass bed than in the sandy meadows located in the centre of the Bay. Maximal above-ground biomasses were similar in the two population types. In the well-established beds, vegetative shoot densities, above-ground and below-ground biomasses showed a unimodal pattern with minima in winter (4000 to 9000 shoots·m−2, 40 to 80 g DW·m−2, and 40 to 60 g DW·m−2, respectively) and maxima in summer (11000 to 22000 shoots·m−2, 110 to 150 g DW·m−2, and 140 to 200 g DW·m−2, respectively). Reproductive shoots were observed from the beginning of June until the end of September, except in the colonizing bed where they persisted until December. Furthermore, in the latter, maximal reproductive shoot density was higher (2600 shoots·m−2) than in the established beds (650 to 960 shoots·m−2). The total production of Z. noltii in Arcachon Bay was estimated to approximately 35.6·106 kg DW·y−1 (19.4·106 kg DW·y−1 for above-ground parts and 16.2·106 kg DW·y−1 for below-ground parts).  相似文献   
42.
Mass accretion is the key factor for evolution of galaxies. It can occur through secular evolution, when gas in the outer parts is driven inwards by dynamical instabilities, such as spirals or bars. This secular evolution proceeds very slowly when spontaneous, and can be accelerated when triggered by companions. Accretion can also occur directly through merging of small companions, or more violent interaction and coalescence. We discuss the relative importance of both processes, their time-scale and frequency along a Hubble time. Signatures of both processes can be found in the Milky Way. It is however likely that our Galaxy had already gathered the bulk of its mass about 8–10 Gyr ago, as is expected in hierarchical galaxy formation scenarios. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
43.
A thermokarst is a collapse feature resulting from the thawing of ice‐rich permafrost or of massive ice of various origins. Little attention has been paid to the sedimentary fabric resulting from this type of collapse, except for glaciotectonic features. In western Europe, two palaeo‐forms are commonly studied: lithalsas and ice‐wedge casts. Collapsed pingos are much rarer. Very few papers have compiled present‐day and fossil data. Here, field data collected from quarries in the eastern Paris Basin were analysed, providing useful records of thermokarst collapses in alluvial calcareous silts, sands, and gravels. These forms have a circular shape when viewed on satellite images. Permafrost is attested regionally by the recurrent occurrence of meter‐sized pattern grounds at the surface of the chalk and of ice‐wedge casts. Traces of segregation and reticulate ice are common. These features are primarily connected to a major interstadial, c. 150 ka BP, orbitally forced and commonly associated with a major glacial retreat. They occur both in drained and waterlogged situations, resulting in a specific pattern of deformation. They are controlled by the brittle and plastic behaviour of sediments and resemble passive glaciotectonism. Normal and reverse faults, with the offset decreasing downward, are common, and those with local shear are reported. Lithalsas, seasonal frost blisters, spring frost blisters and perhaps pingos seem to have formed. Most of these deformations correspond to thermokarst sinkholes bordered by gravitational collapse faults. The offset of these faults increases towards the surface, and the faults have been recurrently confused with neotectonism triggered by palaeo‐earthquakes. However, there are no faults beneath the observed deformation features, and the region lacks recorded seismic activity over the last century. Our data may be helpful in interpreting similar structures elsewhere.  相似文献   
44.
45.
46.
The Visual and Infrared Mapping Spectrometer (VIMS) instrument on the Cassini Saturn Orbiter returned spectral imaging data as the spacecraft undertook six close encounters with Titan beginning 7 July, 2004. Three of these flybys each produced overlapping coverage of two distinct regions of Titan's surface. Twenty-four points were selected on approximately opposite hemispheres to serve as photometric controls. Six points were selected in each of four reflectance classes. On one hemisphere each control point was observed at three distinct phase angles. From the derived phase coefficients, preliminary normal reflectances were derived for each reflectance class. The normal reflectance of Titan's surface units at 2.0178 μm ranged from 0.079 to 0.185 for the most absorbing to the most reflective units assuming no contribution from absorbing haze. When a modest haze contribution of τ=0.1 is considered these numbers increase to 0.089–0.215. We find that the lowest three reflectance classes have comparable normal reflectance on either hemisphere. However, for the highest brightness class the normal reflectance is higher on the hemisphere encompassing longitude 14–65° compared to the same high brightness class for the hemisphere encompassing 122–156° longitude. We conclude that an albedo dichotomy observed in continental sized units on Titan is due not only to one unit having more areal coverage of reflective material than the other but the material on the brighter unit is intrinsically more reflective than the most reflective material on the other unit. This suggests that surface renewal processes are more widespread on Titan's more reflective units than on its less reflective units.

We note that one of our photometric control points has increased in reflectance by 12% relative to the surrounding terrain from July of 2004 to April and May of 2005. Possible causes of this effect include atmospheric processes such as ground fog or orographic clouds; the suggestion of active volcanism cannot be ruled out.

Several interesting circular features which resembled impact craters were identified on Titan's surface at the time of the initial Titan flyby in July of 2004. We traced photometric profiles through two of these candidate craters and attempted to fit these profiles to the photometric properties expected from model depressions. We find that the best-fit attempt to model these features as craters requires that they be unrealistically deep, approximately 70 km deep. We conclude that despite their appearance, these circular features are not craters, however, the possibility that they are palimpsests cannot be ruled out.

We used two methods to test for the presence of vast expanses of liquids on Titan's surface that had been suggested to resemble oceans. Specular reflection of sunlight would be indicative of widespread liquids on the surface; we found no evidence of this. A large liquid body should also show uniformity in photometric profile; we found the profiles to be highly variable. The lack of specular reflection and the high photometric variability in the profiles across candidate oceans is inconsistent with the presence of vast expanses of flat-lying liquids on Titan's surface. While liquid accumulation may be present as small, sub-pixel-sized bodies, or in areas of the surface which still remain to be observed by VIMS, the presence of large ocean-sized accumulations of liquids can be ruled out.

The Cassini orbital tour offers the opportunity for VIMS to image the same parts of Titan's surface repeatedly at many different illumination and observation geometries. This creates the possibility of understanding the properties of Titan's atmosphere and haze by iteratively adapting models to create a best fit to the surface reflectance properties.  相似文献   

47.
Knowledge of the molecular component of the ISM is fundamental to understand star formation. The H2 component appears to dominate the gas mass in the inner parts of galaxies, while the HI component dominates in the outer parts. Observation of the CO and other lines in normal and starburst galaxies have questioned the CO-to-H2 conversion factor, and detection of CO in dwarfs have shown how sensitive the conversion factor is to metallicity. Our knowledge has made great progress in recent years, because of sensitivity and spatial resolution improvements. Large-scale CO maps of nearby galaxies are now available, which extend our knowledge on global properties, radial gradients, and spiral structure of the molecular ISM. Millimetric interferometers reveal high velocity gradients in galaxy nuclei, and formation of embedded structures, like bars within bars. Galaxy interactions are very effective to enhance gas concentrations and trigger starbursts. Nuclear disks or rings are frequently observed, that concentrate the star formation activity. Since the density of starbursting galaxies is strongly increasing with redshift, the CO lines and the mm dust emission are a privileged tool to follow evolution of galaxies and observe the ISM dynamics at high redshift: they could give an answer about the debated question of the star-formation history, since many massive remote starbursts could be dust-enshrouded.  相似文献   
48.
Permafrost-induced deformation of ground features is threating infrastructure in northern communities. An understanding of permafrost distribution is therefore critical for sustainable adaptation planning and infrastructure maintenance. Considering the large area underlain by permafrost in the Yukon Territory, there is a need for baseline information to characterize the permafrost in this region. In this study, the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique was used to identify areas of ground movement likely caused by changes in permafrost. The DInSAR technique was applied to a series of repeat-pass C-band RADARSAT-2 observations collected in 2015 over the Village of Mayo, in central Yukon Territory, Canada. The conventional DInSAR technique demonstrated that ground deformation could be detected in this area, but the resulting deformation maps contained errors due to a loss of coherence from changes in vegetation and atmospheric phase delay. To address these limitations, the Small BAseline Subset (SBAS) InSAR technique was applied to reduce phase error, thus improving the deformation maps. To understand the relationship between the deformation maps and land cover types, an object-based Random Forest classification was developed to classify the study area into different land cover types. Integration of the InSAR results and the classification map revealed that the built-up class (e.g., airport) was affected by subsidence on the order of ?2 to ?4 cm. The spatial extent of the surface displacement map obtained using the SBAS InSAR technique was then correlated with the surficial geology map. This revealed that much of the main infrastructure in the Village of Mayo is underlain by interbedded glaciofluvial and glaciolacustrine sediments, the latter of which caused the most damage to human made structures. This study provides a method for permafrost monitoring that builds upon the synergistic use of the SBAS InSAR technique, object-based image analysis, and surficial geology data.  相似文献   
49.
Geological samples from the southern Kerguelen Plateau include Lower Cretaceous basalt and lava breccia, probable Lower Cretaceous conglomerate and shelf limestone, Upper Cretaceous chert with dolomite, Upper Cretaceous-Eocene ooze, and Tertiary conglomerate. Neogene sediments are only a few hundred m thick, and include foraminiferal and diatomaceous ooze, and ice-rafted debris. In conjunction with seismic reflection profiles, the samples indicate Early Cretaceous near-shore volcanism, followed by erosion, sedimentation, and subsidence through Cretaceous; arching of the plateau at the end of Cretaceous; subsidence through Paleogene; widespread emergence in mid-Tertiary; and slow subsidence through Neogene.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号