首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   988篇
  免费   41篇
  国内免费   7篇
测绘学   18篇
大气科学   93篇
地球物理   244篇
地质学   455篇
海洋学   66篇
天文学   103篇
综合类   4篇
自然地理   53篇
  2023年   4篇
  2022年   4篇
  2021年   18篇
  2020年   20篇
  2019年   17篇
  2018年   26篇
  2017年   35篇
  2016年   26篇
  2015年   40篇
  2014年   41篇
  2013年   62篇
  2012年   51篇
  2011年   60篇
  2010年   70篇
  2009年   59篇
  2008年   55篇
  2007年   47篇
  2006年   48篇
  2005年   52篇
  2004年   44篇
  2003年   32篇
  2002年   32篇
  2001年   22篇
  2000年   15篇
  1999年   10篇
  1998年   13篇
  1997年   12篇
  1996年   12篇
  1995年   15篇
  1994年   3篇
  1993年   14篇
  1992年   4篇
  1991年   4篇
  1990年   11篇
  1989年   6篇
  1988年   1篇
  1987年   12篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有1036条查询结果,搜索用时 0 毫秒
101.
[Translated by the editorial staff] Simulating the precipitation regime of Northern Africa is challenging for regional climate models, particularly because of the strong spatial and temporal variability of rain events in the region. In this study we evaluate simulations conducted with two recent versions of regional climate models (RCM) developed in Canada: the CRCM5 and CanRCM4. Both are also used in the COordinated Regional Climate Downscaling EXperiment (CORDEX)-Africa. The assessment is based on the occurrence, duration, and intensity indices of daily precipitation in Maghreb during the fall and spring seasons from 1998 to 2008. We also examine the links between the North-Atlantic Oscillation (NAO) index, weather systems, and the precipitation regime over the region. During the rainy season (September to February), the CRCM5 reproduces the frequency and intensity of extreme precipitation adequately, as well as the occurrence of days with rain, while the CanRCM4 underestimates precipitation extremes. The study of links between weather systems and the precipitation regime shows that, along the Atlantic coast, precipitation (occurrence, intensity, and wet sequences) increases significantly with storm frequency in the fall. In winter, these links grow stronger going east, from the Atlantic coast to the Mediterranean coast. The negative phases of the NAO index are statistically associated with the increase in rain intensity, extremes, and accumulation along the Atlantic coast in the fall. However, the link weakens in winter over these regions and strengthens along the Mediterranean coast as the precipitation frequency rises during negative phases of the NAO. Both RCMs generally reproduce the links between the NAO and the precipitation regime well, regardless of location.  相似文献   
102.
A large multi-institutional nearshore field experiment was conducted at Truc Vert, on the Atlantic coast of France in early 2008. Truc Vert’08 was designed to measure beach change on a long, sandy stretch of coast without engineering works with emphasis on large winter waves (offshore significant wave height up to 8 m), a three-dimensional morphology, and macro-tidal conditions. Nearshore wave transformation, circulation and bathymetric changes involve coupled processes at many spatial and temporal scales thus implying the need to improve our knowledge for the full spectrum of scales to achieve a comprehensive view of the natural system. This experiment is unique when compared with existing experiments because of the simultaneous investigation of processes at different scales, both spatially (from ripples to sand banks) and temporally (from single swash events to several spring-neap tidal cycles, including a major storm event). The purpose of this paper is to provide background information on the experiment by providing detailed presentation of the instrument layout and snapshots of preliminary results.  相似文献   
103.
Double sandbar systems are common morphological features along sandy, wave‐dominated, micro‐ to meso‐tidal coastlines. In the companion paper, we demonstrated how various alongshore inner‐bar rip‐channel patterns can develop through morphological coupling to an alongshore‐variable outer bar. The simulated coupling patterns are, however, scarcely observed in the field. Instead, inner‐bar rip channels more often possess remarkably smaller and more variable alongshore length scales, suggesting that coupling mechanisms do not play a substantial role in the overall double‐sandbar dynamics. Here we use a numerical model to show that the relative importance of self‐organization and morphological coupling changes in favour of the latter with an increase in waterdepth variability along the outer‐bar crest. Furthermore, we find that the typical alongshore variability in inner‐bar rip‐channel scale is indicative of a mixture of self‐organization and morphological coupling rather than self‐organization alone. Morphological coupling may thus be more important to understanding and predicting the evolution of inner‐bar rip channels than previously envisaged. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   
104.
A mass‐balance approach was used to estimate in‐stream processes related to inorganic nitrogen species (NH4+, NO2? and NO3?) in a large river characterized by highly variable hydrological conditions, the Garonne River (south‐west France). Studies were conducted in two consecutive reaches of 30 km located downstream of the Toulouse agglomeration (population 760 000, seventh order), impacted by modification of discharge regime and high nitrogen concentrations. The mass‐balance was calculated by two methods: the first is based on a variable residence time (VRT) simulated by a one‐dimensional (1‐D) hydraulic model; the second is a based on a calculation using constant residence time (CRT) evaluated according to hydrographic peaks. In the context of the study, removal of dissolved inorganic nitrogen (DIN) for a reach of 30 km is underestimated by 11% with the CRT method. In sub‐reaches, the discrepancy between the two methods led to a 50% overestimation of DIN removal in the upper reach (13 km) and a 43% underestimation in the lower reach (17 km) using the CRT method. The study highlights the importance of residence time determination when using modelling approaches in the assessment of whole stream processes in short‐duration mass‐balance for a large river under variable hydrological conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
105.
The influence of a hedge surrounding bottomland on soil‐water movement along the hillslope was studied on a plot scale for 28 months. The study was based on the comparison of two transects, one with a hedge, the other without, using mainly a dense grid of tensiometers. The influence of the bottomland hedge was located in the area where tree roots were developed, several metres upslope from the hedge, and could be observed both in the saturated and non‐saturated zone, from May to December. The hedge induced a high rate of soil drying, because of the high evaporative capacity of the trees. We evaluated that water uptake by the hedge during the growing season was at least 100 mm higher than without a hedge. This increased drying rate led to a delayed rewetting of the soils upslope from the hedge in autumn, of about 1 month compared with the situation without a hedge. Several consequences of this delayed rewetting are expected: a delay in the return of subsurface transfer from the hillslope to the riparian zone, a buffering effect of hedges on floods, already observed at the catchment scale, and an increased residence time of pollutants. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
106.
Vigouroux  Anne  Pap  Judit M.  Delache  Philippe 《Solar physics》1997,176(1):1-21
The detection of solar irradiance variations (both bolometric and at various wavelengths) by satellite-based experiments during the last one-and-a-half decades stimulated modeling efforts to help identify their causes and to provide estimates of irradiance data for those time intervals when no satellite observations exist. In this paper we present estimates of the long-term irradiance changes developed with Fourier and wavelet transforms. The month-to-month irradiance variations, after removing the solar cycle related long-term changes, are studied with the cross-correlation technique. Results of the analysis reveal a significant phase shift at 3 months between the full-disk magnetic field strength and total solar and UV irradiance, with irradiance leading the magnetic field variability. In addition to this time delay between the changes in solar irradiance and the magnetic field, a 10-month phase shift has been found between the UV flux at 280 nm and total solar irradiance corrected for sunspot darkening. The existence of these phase shifts suggests the possibility of a coupling between the physical processes taking place below, in, and above the photosphere.  相似文献   
107.
108.
109.
110.
Increased melting on glaciers and ice sheets and rising sea level are often mentioned as important aspects of the anticipated greenhouse warming of the earth's atmosphere. This paper deals with the sensitivity of Greenland's ice mass budget and presents a tentative projection of the Greenland component of future sea level rise for the next few hundred years. To do this, the ‘Villach II temperature scenario’ is prescribed,output from a comprehensive mass balance model is used to drive a high-resolution 3-D thermomechanic model of the ice sheet.The mass balance model consists of two parts: the accumulation part is based on presently observed values and is forced by changes in mean anr tempeerature. The ablation model is based on the degree-day method and accounts for daily and annual temperature cycle, a different degree-day factor for ice and snow melting and superimposed ice formation. Under present-day climatic conditions, the following total mass balance results (in ice equivalent per years): 599.3 × 109 m3 of accumulation, 281.7 × 109m3 of runoff assuming a balanced budget, 317.6 × 109m3 of iceberg calving. A 1K uniform warming is then calculated to increase the runoff by 119.5 × 109 m3. Since accumulation also increases by 32 × 109 m3, this leads to reduction of the total mass balance by 887.5 × 109 m3 of ice, corresponding to a sea level rise of 0.22 mm/yr. For temperature increase larger than 2.7 K, runoff, exceeds accumulation, and if ice sheet dynamics were to remain unchanged, this would add an extra amount of 0.8 mmyr to the worl's oceans.Imposing the Villach II scenario (warming up to 4.23 K) and accumulating mass balance changes forward in time (static response) would then result in a global sea level rise of 7.1 cm by 2100 AD, but this figure may go up to as much as 40 cm per century in case the warming is doubled. In a subsequent dynamic model involving the ice flow, the ice sheet is found to produce a counteracting effect by dynamically producing steeper slopes at the margin, thereby reducing the area over which runoff can take place. This effect is particularly apparent in the northeastern part of the ice sheet, and is also more pronounced for the smaller temperature perturbations. Nevertheless, all these experiments certainly highlight the vulnerability of the Greenland ice sheet with respect to a climatic warming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号