首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1354篇
  免费   43篇
  国内免费   25篇
测绘学   24篇
大气科学   114篇
地球物理   274篇
地质学   496篇
海洋学   119篇
天文学   214篇
综合类   16篇
自然地理   165篇
  2023年   7篇
  2021年   16篇
  2020年   18篇
  2019年   19篇
  2018年   34篇
  2017年   20篇
  2016年   23篇
  2015年   39篇
  2014年   40篇
  2013年   82篇
  2012年   49篇
  2011年   83篇
  2010年   54篇
  2009年   68篇
  2008年   58篇
  2007年   76篇
  2006年   58篇
  2005年   46篇
  2004年   37篇
  2003年   33篇
  2002年   40篇
  2001年   22篇
  2000年   32篇
  1999年   25篇
  1998年   20篇
  1997年   22篇
  1996年   23篇
  1995年   14篇
  1994年   22篇
  1993年   15篇
  1992年   13篇
  1991年   17篇
  1990年   11篇
  1989年   22篇
  1988年   16篇
  1987年   21篇
  1986年   17篇
  1985年   17篇
  1984年   27篇
  1983年   17篇
  1982年   15篇
  1981年   16篇
  1980年   20篇
  1979年   15篇
  1978年   11篇
  1977年   11篇
  1976年   11篇
  1975年   13篇
  1974年   7篇
  1973年   11篇
排序方式: 共有1422条查询结果,搜索用时 0 毫秒
981.
The discharge of sewage to the ocean can be an issue of public and scientific concern. Such has been the case in Sydney over at least the past 25 years. In this paper, the history of Sydney's sewage discharge is outlined, and the decisions taken to address concerns about the environmental effects of shoreline discharge of large volumes of primary treated sewage effluent are described. Design criteria are described for deepwater outfall systems that, since 1990–1991, have discharged 80% of Sydney's sewage after primary treatment at North Head, Bondi and Malabar Sewage Treatment Plants (STP). The integrated elements of a comprehensive five year Environmental Monitoring Programme (EMP) are set out. Other papers in this volume describe the result of EMP component studies. The five year EMP was designed to provide the basis to assess the environmental performance of the new deepwater outfall systems during the first two years of their operation and to provide a baseline against which further change may be measured.  相似文献   
982.
A three dimensional time-dependent baroclinic hydrodynamic model, including sediment transport and incorporating a turbulence energy sub-model, is used in cross sectional form to examine sediment movement at the shelf edge off North West Iberia at 42°40.5’N where measurements were made as part of the OMEX-II programme. These calculations are complemented by a simpler, in essence time-independent model, which is used to examine the sensitivity of the sediment distribution over the slope (from a shelf-break source) to changes in the specified values of horizontal and vertical diffusion coefficients. The philosophy of the paper is to use idealized tidal, wind and wind wave forcing to examine changes in sediment distribution resulting from these processes. Calculations with the time-dependent and steady state models give insight into both the role of events and long-term effects. The steady state model focuses on the off-shelf region, whilst the time-dependent model considers on-shelf events.Tidal calculations showed that for the stratification used here the internal tide in the OMEX region was primarily confined to the shelf edge and ocean. A mean on-shelf sediment transport in the surface layer and off-shelf transport at the bed was found. Across-shelf circulations produced by up-welling/down-welling favourable winds gave rise to on-shelf/off-shelf currents in the bottom boundary layer with an opposite flow in the surface layer. In the case of an up-welling favourable wind, sediment suspension was at a maximum in the near coastal region, with sediment being advected off shore in the surface layer. With a down-welling favourable wind, surface sediment was advected towards the shore, but there was offshore transport at the bed. Near the shelf edge any upwelling flow had the tendency to return this sediment to the surface layer from whence it was transported on-shore. So in essence the sediment was trapped within an on-shelf circulation cell. Wind waves effects increased the total bed stress and hence the sediment concentration and its transport, although its pattern was determined by tidal and wind forcing.The time independent model with increased/decreased lateral diffusivity gave an enhanced/reduced horizontal sediment distribution for a given settling velocity. As the settling velocity increases, the down-slope movement of sediment is increased, with a reduction in the thickness of the near-bed sediment layer, but with little change in its horizontal extent.  相似文献   
983.
The effects of water depth discontinuity near the harbor mouth on harbor oscillations are examined. Linear long-wave equations are used as the basis of the present study. For simplicity, only the normal incident waves are considered. Assuming that the harbor mouth is small in comparison with wavelength, the method of matched asymptotic expansion is employed to obtain the ocean impedance and the harbor responses. It is found that the incident waves can be trapped over the depth discontinuity which causes large oscillations near the harbor mouth. The radiation damping also decreases because of the appearance of the depth discontinuity, which leads to large amplifications at the lowest mode.  相似文献   
984.
Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part of a flow cools very rapidly by water-steam convection. Flooding of the flow top by surface drainage most likely induces the convection. Colonnades form under conditions of slower cooling by conductive heat transfer in the absence of water.  相似文献   
985.
An extensive compilation of recently acquired geophysical reconnaissance data has allowed the Mesozoic magnetic lineations (The Eastern Keathley sequence) to be identified and mapped in detail for the area off northwest Africa lying between Madeira and the Cape Verde Islands. These anomalies were generated as one limb of a symmetric spreading center (Paleo Mid-Atlantic Ridge) from about 107 to 153 m.y.B.P. Offsets in the lineation pattern serve to identify fracture zone traces whose trends are approximately east-west. The seaward boundary of the marginal quiet zone does not precisely define an isochron due to the presence of a variable width transition zone of intermediate amplitude magnetic anomalies. Crust underlying the marginal quiet zone was generated, at least in part, during the Jurassic, Graham normal polarity epoch. The quiet zone boundary is not offset significantly on opposite sides of the Canaries lineament as previously suggested. A possible counterpart of the U.S. east coast magnetic anomaly is observed in some areas near the shelf/slope break of Spanish Sahara and Mauritania. The presence of relatively high-amplitude (but not-correlatable) magnetic anomalies seaward of the Mesozoic sequence and presumably generated during the Cretaceous, Mercanton normal polarity epoch remains a paradox.  相似文献   
986.
Infrared-Faint Radio Sources represent a new and unexpected class of object which is bright at radio wavelengths but unusually faint at infrared wavelengths. If, like most mJy radio sources, they were either conventional active or star-forming galaxies in the local Universe, we would expect them to be detectable at infrared wavelengths, and so their non-detection by the Spitzer Space Telescope is surprising. Here, we report the detection of one of these sources using very long baseline interferometry, from which we conclude that the sources are driven by active galactic nuclei. We suggest that these sources are either normal radio-loud quasars at high redshift or abnormally obscured radio galaxies.  相似文献   
987.
988.
We present a quantitative analysis of CO thermal emissions discovered on the nightside of Titan by Baines et al. [2005. The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/VIMS. Earth, Moon, and Planets, 96, 119–147]. in Cassini/VIMS spectral imagery. We identify these emission features as the P and R branches of the 1-0 vibrational band of carbon monoxide (CO) near 4.65 μm. For CH3D, the prominent Q branch of the ν2 fundamental band of CH3D near 4.55 μm is apparent. CO2 emissions from the strong v3 vibrational band are virtually absent, indicating a CO2 abundance several orders of magnitude less than CO, in agreement with previous investigations. Analysis of CO emission spectra obtained over a variety of altitudes on Titan's nightside limb indicates that the stratospheric abundance of CO is 32±15 ppm, and together with other recent determinations, suggests a vertical distribution of CO nearly constant at this value from the surface throughout the troposphere to at least the stratopause near 300 km altitude. The corresponding total atmospheric content of CO in Titan is 2.9±1.5×1014 kg. Given the long lifetime of CO in the oxygen-poor Titan atmosphere (0.5–1.0 Gyr), we find a mean CO atmospheric production rate of 6±3×105 kg yr−1. Given the lack of primordial heavy noble gases observed by Huygens [Niemann et al., 2005. The abundances of constituents of Titan's atmosphere from the GCMS on the Huygens probe. Nature, 438, 779–784], the primary source of atmospheric CO is likely surface emissions. The implied CO/CH4 mixing ratio of near-surface material is 1.8±0.9×10−4, based on an average methane surface emission rate over the past 0.5 Gyr of 1.3×10−13 gm cm−2 s−1 as required to balance hydrocarbon haze production via methane photolysis [Wilson and Atreya, 2004. Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 Doi:10.1029/2003JE002181]. This low CO/CH4 ratio is much lower than expected for the sub-nebular formation region of Titan and supports the hypothesis [e.g., Atreya et al., 2005. Methane on Titan: photochemical-meteorological-hydrogeochemical cycle. Bull. Am. Astron. Soc. 37, 735] that the conversion of primordial CO and other carbon-bearing materials into CH4-enriched clathrate-hydrates occurs within the deep interior of Titan via the release of hydrogen through the serpentinization process followed by Fischer–Tropsch catalysis. The time-averaged predicted emission rate of methane-rich surface materials is 0.02 km3 yr−1, a value significantly lower than the rate of silicate lava production for the Earth and Venus, but nonetheless indicative of significant active geological processes reshaping the surface of Titan.  相似文献   
989.
990.
The term Tertiary, subdivided into the Paleogene and Neogene, is traditionally used to represent the interval of geological time between the Cretaceous and Quaternary. In the 1990s, however, the Neogene and Paleogene were ratified by the International Union of Geological Sciences as periods/systems of the Cenozoic Era/Erathem, leaving the Tertiary officially undefined. The Tertiary nonetheless remains a formal term that has never been officially eliminated, and its widespread use today implies a long future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号