首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5758篇
  免费   225篇
  国内免费   89篇
测绘学   168篇
大气科学   546篇
地球物理   1441篇
地质学   1993篇
海洋学   549篇
天文学   754篇
综合类   22篇
自然地理   599篇
  2021年   60篇
  2020年   64篇
  2019年   86篇
  2018年   124篇
  2017年   116篇
  2016年   156篇
  2015年   144篇
  2014年   202篇
  2013年   323篇
  2012年   242篇
  2011年   263篇
  2010年   191篇
  2009年   304篇
  2008年   285篇
  2007年   262篇
  2006年   220篇
  2005年   188篇
  2004年   196篇
  2003年   189篇
  2002年   181篇
  2001年   133篇
  2000年   136篇
  1999年   113篇
  1998年   107篇
  1997年   91篇
  1996年   84篇
  1995年   85篇
  1994年   75篇
  1993年   63篇
  1992年   65篇
  1991年   69篇
  1990年   66篇
  1989年   59篇
  1988年   58篇
  1987年   65篇
  1986年   43篇
  1985年   73篇
  1984年   80篇
  1983年   72篇
  1982年   65篇
  1981年   76篇
  1980年   63篇
  1979年   57篇
  1978年   38篇
  1977年   54篇
  1976年   63篇
  1975年   46篇
  1974年   56篇
  1973年   47篇
  1972年   25篇
排序方式: 共有6072条查询结果,搜索用时 312 毫秒
861.
The conditional probabilistic scenario analysis combines statistical methods of uncertainty analysis at parameter level with storylines which recognize the deep uncertainty that exists for several underlying trends. The model calculations indicate that cumulative 21st century emissions could range from 800 to 2500 GtC in the absence of climate policy. This range originates partly from the underlying storylines, and partly from the probabilistic analysis. Among the most important parameters contributing to the uncertainty range are uncertainty in income growth, population growth, parameters determining energy demand, oil resources and fuel preferences. The contribution of these factors is also scenario-dependent.  相似文献   
862.
The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas forcing is examined using a coupled model of intermediate complexity, including a dynamic 3-D ocean subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north “Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity scenarios require several hundred additional years to make such a determination. We also systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean response. In contrast with previous studies based on results using simpler ocean models, we find that except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has little impact on whether the run collapses or recovers. In this narrow range, however, forcing increases on a time scale of slow ocean advective processes results in weaker declines in overturning strength and can permit a run to recover that would otherwise collapse.  相似文献   
863.
We outline our experience in organizing the first edition of the Workshop on Matter, Astrophysics, Gravitation, Ions and Cosmology, held in virtual and in-person format, denominated MAGIC23, held from 6 to 10 March, 2023, in Praia do Rosa, Santa Catarina, Brazil. The event aimed to bring together leading academic scientists, professors, students, and research scholars for exchanging experiences and discuss the most recent innovations, trends, practical challenges, and experimental and theoretical solutions adopted in the investigation fields within the scope of the meeting. The workshop offered to the participants a platform for scientific and academic projects, partnerships, and presentation of high-quality research contributions describing original and unpublished results on topics related to matter, astrophysics, gravitation, ions, and cosmology.  相似文献   
864.
An Integrated Assessment of changes in the thermohaline circulation   总被引:1,自引:0,他引:1  
This paper discusses the risks of a shutdown of the thermohaline circulation (THC) for the climate system, for ecosystems in and around the North Atlantic as well as for fisheries and agriculture by way of an Integrated Assessment. The climate model simulations are based on greenhouse gas scenarios for the 21st century and beyond. A shutdown of the THC, complete by 2150, is triggered if increased freshwater input from inland ice melt or enhanced runoff is assumed. The shutdown retards the greenhouse gas-induced atmospheric warming trend in the Northern Hemisphere, but does not lead to a persistent net cooling. Due to the simulated THC shutdown the sea level at the North Atlantic shores rises by up to 80 cm by 2150, in addition to the global sea level rise. This could potentially be a serious impact that requires expensive coastal protection measures. A reduction of marine net primary productivity is associated with the impacts of warming rather than a THC shutdown. Regional shifts in the currents in the Nordic Seas could strongly deteriorate survival chances for cod larvae and juveniles. This could lead to cod fisheries becoming unprofitable by the end of the 21st century. While regional socioeconomic impacts might be large, damages would be probably small in relation to the respective gross national products. Terrestrial ecosystem productivity is affected much more by the fertilization from the increasing CO2 concentration than by a THC shutdown. In addition, the level of warming in the 22nd to 24th century favours crop production in northern Europe a lot, no matter whether the THC shuts down or not. CO2 emissions corridors aimed at limiting the risk of a THC breakdown to 10% or less are narrow, requiring departure from business-as-usual in the next few decades. The uncertainty about THC risks is still high. This is seen in model analyses as well as in the experts’ views that were elicited. The overview of results presented here is the outcome of the Integrated Assessment project INTEGRATION.  相似文献   
865.
Polarization-based line spectroscopy is a valuable tool in determining the characteristics of electron distribution functions in anisotropic plasmas. For instance, directional electrons can unevenly populate the magnetic sublevels of atomic energy levels resulting in partial polarization of the emitted spectral lines. The large dimensions of astrophysical sources raise the possibility of non-negligible self-absorption effects on spectral line properties. Alternatively, the high densities characteristic of laser-produced laboratory plasmas can also result in substantial optical depth values. We present a modeling study of He-like Fe line emissions in which we investigate the effects of radiation transport on the polarization of selected spectral lines under corona conditions.  相似文献   
866.
Geochemical disequilibrium of Earth's atmosphere is a sign of life. The fact that Earth's atmosphere is just right for life led Lovelock to propose the Gaia hypothesis: life itself regulates the environment on planetary scale in order to maintain habitability. This hypothesis is supported by the so-called Daisyworld parable, which illustrates a possible mechanism for such a self regulation. Here we revisit Daisyworld and challenge some of its conclusions from a closer examination of the model. We find that even within this simple, conceptual model of a Gaian planet there are regimes where climate is less homeostatic than on a dead planet. Furthermore, in other regimes, bistability between two climate states is found to exist due to the presence of life. This indicates that even if the Gaian stability might describe life in some planetary conditions, it need not be generic to all inhabited planets.  相似文献   
867.
868.
869.
Analysis of Titan’s hemispheric brightness asymmetry from mapped Cassini images reveals an axis of symmetry that is tilted with respect to the rotational axis of the solid body. Twenty images taken from 2004 through 2007 show a mean axial offset of 3.8 ± 0.9° relative to the solid body’s pole, directed 79 ± 24° to the west of the sub-solar longitude. These values are consistent with recent measurements of an implied atmospheric spin axis determined from isothermal mapping by [Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A., 2008. Icarus 197, 549-555].  相似文献   
870.
Epimetheus, a small moon of Saturn, has a rotational libration (an oscillation about synchronous rotation) of 5.9°±1.2°, placing Epimetheus in the company of Earth’s Moon and Mars’ Phobos as the only natural satellites for which forced rotational libration has been detected. The forced libration is caused by the satellite’s slightly eccentric orbit and non-spherical shape.Detection of a moon’s forced libration allows us to probe its interior by comparing the measured amplitude to that predicted by a shape model assuming constant density. A discrepancy between the two would indicate internal density asymmetries. For Epimetheus, the uncertainties in the shape model are large enough to account for the measured libration amplitude. For Janus, on the other hand, although we cannot rule out synchronous rotation, a permanent offset of several degrees between Janus’ minimum moment of inertia (long axis) and the equilibrium sub-Saturn point may indicate that Janus does have modest internal density asymmetries.The rotation states of Janus and Epimetheus experience a perturbation every 4 years, as the two moons “swap” orbits. The sudden change in the orbital periods produces a free libration about synchronous rotation that is subsequently damped by internal friction. We calculate that this free libration is small in amplitude (<0.1°) and decays quickly (a few weeks, at most), and is thus below the current limits for detection using Cassini images.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号