首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5925篇
  免费   189篇
  国内免费   89篇
测绘学   168篇
大气科学   546篇
地球物理   1463篇
地质学   2010篇
海洋学   552篇
天文学   756篇
综合类   22篇
自然地理   686篇
  2021年   61篇
  2020年   64篇
  2019年   87篇
  2018年   124篇
  2017年   117篇
  2016年   157篇
  2015年   144篇
  2014年   204篇
  2013年   330篇
  2012年   244篇
  2011年   264篇
  2010年   191篇
  2009年   304篇
  2008年   289篇
  2007年   263篇
  2006年   222篇
  2005年   189篇
  2004年   200篇
  2003年   196篇
  2002年   187篇
  2001年   136篇
  2000年   140篇
  1999年   114篇
  1998年   113篇
  1997年   92篇
  1996年   90篇
  1995年   89篇
  1994年   77篇
  1993年   64篇
  1992年   67篇
  1991年   72篇
  1990年   72篇
  1989年   61篇
  1988年   59篇
  1987年   69篇
  1986年   45篇
  1985年   75篇
  1984年   83篇
  1983年   75篇
  1982年   66篇
  1981年   77篇
  1980年   67篇
  1979年   59篇
  1978年   44篇
  1977年   58篇
  1976年   68篇
  1975年   49篇
  1974年   59篇
  1973年   49篇
  1972年   27篇
排序方式: 共有6203条查询结果,搜索用时 15 毫秒
241.
242.
243.
244.
The study provides one of the first lines of evidence showing linkages between Antarctic phytoplankton abundance and composition in response to ENSO, based on historical reconstruction of sediment biomarkers. In addition to sediment biomarkers, field measured and remote sensing data of phytoplankton abundance were also recorded from Prydz Bay, Eastern Antarctica. Com-munity structure of field measured phytoplankton showed significant El Ni?o/La Ni?a-related succession during 1990 to 2002. In general, the number of algae species decreased during El Ni?o and La Ni?a years compared to normal years. Austral summer monthly variation of remotely sensed chlorophyll-a (Chl-a), particulate organic carbon (POC), and sea surface temperature (SST) indicated that ENSO impacted the timing of phytoplankton blooms during 2007 to 2011. Phytoplankton blooms (indicated by Chl-a and POC) preceded the increases in SST during El Ni?o years, and lagged behind the SST increases during La Ni?a years. Stratigraphic record of marine sedimentary lipid (brassicasterol, dinosterol and alkenones) biomarkers inferred that the proportions of different algae (diatoms, dinoflagellates and haptophytes) changed significantly between El Ni?o and La Ni?a events. The relative proportion of diatoms increased, with that of dinoflagellates being decreased during El Ni?o years, while it was reversed during La Ni?a years.  相似文献   
245.
We compare the moment of inertia (MOI) of a simple hydrostatic, two layer body as determined by the Radau–Darwin Approximation (RDA) to its exact hydrostatic MOI calculated to first order in the parameter q = Ω2R3/GM, where Ω, R, and M are the spin angular velocity, radius, and mass of the body, and G is the gravitational constant. We show that the RDA is in error by less than 1% for many configurations of core sizes and layer densities congruent with those of solid bodies in the Solar System. We then determine the error in the MOI of icy satellites calculated with the RDA due to nonhydrostatic effects by using a simple model in which the core and outer shell have slight degree 2 distortions away from their expected hydrostatic shapes. Since the hydrostatic shape has an associated stress of order ρΩ2R2 (where ρ is density) it follows that the importance of nonhydrostatic effects scales with the dimensionless number σ/ρΩ2R2, where σ is the nonhydrostatic stress. This highlights the likely importance of this error for slowly rotating bodies (e.g., Titan and Callisto) and small bodies (e.g., Saturn moons other than Titan). We apply this model to Titan, Callisto, and Enceladus and find that the RDA-derived MOI can be 10% greater than the actual MOI for nonhydrostatic stresses as small as ∼0.1 bars at the surface or ∼1 bar at the core–mantle boundary, but the actual nonhydrostatic stresses for a given shape change depends on the specifics of the interior model. When we apply this model to Ganymede we find that the stresses necessary to produce the same MOI errors as on Titan, Callisto, and Enceladus are an order of magnitude greater due to its faster rotation, so Ganymede may be the only instance where RDA is reliable. We argue that if satellites can reorient to the lowest energy state then RDA will always give an overestimate of the true MOI. Observations have shown that small nonhydrostatic gravity anomalies exist on Ganymede and Titan, at least at degree 3 and presumably higher. If these anomalies are indicative of the nonhydrostatic anomalies at degree 2 then these imply only a small correction to the MOI, even for Titan, but it is possible that the physical origin of nonhydrostatic degree 2 effects is different from the higher order terms. We conclude that nonhydrostatic effects could be present to an extent that allows Callisto and Titan to be fully differentiated.  相似文献   
246.
Abstract— Antarctic CM meteorites Allan Hills (ALH) 81002 and Lewis Cliff (LEW) 90500 contain abundant fine‐grained rims (FGRs) that surround a variety of coarse‐grained objects. FGRs from both meteorites have similar compositions and petrographic features, independent of their enclosed objects. The FGRs are chemically homogeneous at the 10 μm scale for major and minor elements and at the 25 μm scale for trace elements. They display accretionary features and contain large amounts of volatiles, presumably water. They are depleted in Ca, Mn, and S but enriched in P. All FGRs show a slightly fractionated rare earth element (REE) pattern, with enrichments of Gd and Yb and depletion of Er. Gd is twice as abundant as Er. Our results indicate that those FGRs are not genetically related to their enclosed cores. They were sampled from a reservoir of homogeneously mixed dust, prior to accretion to their parent body. The rim materials subsequently experienced aqueous alteration under identical conditions. Based on their mineral, textural, and especially chemical similarities, we conclude that ALH 81002 and LEW 90500 likely have a similar or identical source.  相似文献   
247.
Unique among neutron stars, 1E 1207.4-5209 is an X-ray pulsar with a spin period of 424 ms that contains at least two strong absorption features in its energy spectrum. This neutron star is positionally coincident with the supernova remnant PKS 1209-51/52 and has been identified as a member of the growing class of radio-quiet compact central objects in supernova remnants. From previous observations with Chandra and XMM-Newton, it has been found that the 1E 1207.4-5209 is not spinning down monotonically as is common for young, isolated pulsars. The spin frequency history requires either strong, frequent glitches, the presence of a fall-back disk, or a binary companion. Here, we report on a sequence of seven XMM-Newton observations of 1E 1207.4-5209 performed during a 40 day window between 2005 June 22 and July 31. Due to unanticipated variance in the phase measurements during the observation period that was beyond the statistical uncertainties, we could not identify a unique phase-coherent timing solution. The three most probable timing solutions give frequency time derivatives of +0.9, ?2.6, and +1.6×10?12 Hz s?1 (listed in descending order of significance). We conclude that the local frequency derivative during our XMM-Newton observing campaign differs from the long-term spin-down rate by more than an order of magnitude. This measurement effectively rules out glitch models for 1E 1207.4-5209. If the long-term spin frequency variations are caused by timing noise, the strength of the timing noise in 1E 1207.4-5209 is much stronger than in other pulsars with similar period derivatives. Therefore, it is highly unlikely that the spin variations are caused by the same physical process that causes timing noise in other isolated pulsars. The most plausible scenario for the observed spin irregularities is the presence of a binary companion to 1E 1207.4-5209. We identified a family of orbital solutions that are consistent with our phase-connected timing solution, archival frequency measurements, and constraints on the companions mass imposed by deep IR and optical observations.  相似文献   
248.
Abstract— We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ?29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ?8120 km2 ejecta blanket. Because the pre‐impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre‐impact terrain) is ?380 km3 the volume of materials above the pre‐impact terrain is ?425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ?100 m of additional ejecta thickness being deposited down‐range compared to the up‐range value at the same radial distance from the rim crest. Distal ramparts are 60 to 125 m high, comparable to the heights of ramparts measured at other multi‐layered ejecta craters. Tooting crater serves as a fresh end‐member for the large impact craters on Mars formed in volcanic materials, and as such may be useful for comparison to fresh craters in other target materials.  相似文献   
249.
Ions heavier than 4He are treated as “minors” in the solar wind. This is justified for many applications since minor ions have no significant influence on the dynamics of the interplanetary plasma. However, minor ions carry information on many aspects of the formation, on the acceleration and on the transfer of solar plasma from the corona into the interplanetary space. This review concentrates on various aspects of minor ions as diagnostic tracers. The elemental abundance patterns of the solar wind are shaped in the chromosphere and in the lower transition region by processes, which are not fully understood at this moment. Despite this lack of detailed understanding, observed abundance patterns have been classified and are now commonly used to characterize the sources, and to trace back solar-wind flows to their origins in the solar atmosphere. Furthermore, the solar wind is the most important source of information for solar isotopic abundances and for solar abundances of volatile elements. In order to fully exploit this information, a comprehensive understanding of elemental and isotopic fractionation processes is required. We provide observational clues to distinguish different processes at work.  相似文献   
250.
We present the results of high-resolution AP3M+SPH simulations of merging clusters of galaxies. We find that the compression and shocking of the core gas during a merger can lead to large increases in bolometric X-ray luminosities and emission-weighted temperatures of clusters. Cooling flows are completely disrupted during equal-mass mergers, with the mass deposition rate dropping to zero as the cores of the clusters collide. The large increase in the cooling time of the core gas strongly suggests that cooling flows will not recover from such a merger within a Hubble time. Mergers with subclumps having one eighth of the mass of the main cluster are also found to disrupt a cooling flow if the merger is head-on. However, in this case the entropy injected into the core gas is rapidly radiated away and the cooling flow restarts within a few Gyr of the merger. Mergers in which the subcluster has an impact parameter of 500 kpc do not disrupt the cooling flow, although the mass deposition rate is reduced by ∼30 per cent. Finally, we find that equal mass, off-centre mergers can effectively mix gas in the cores of clusters, while head on mergers lead to very little mixing. Gas stripped from the outer layers of subclumps results in parts of the outer layers of the main cluster being well mixed, although they have little effect on the gas in the core of the cluster. None of the mergers examined here resulted in the intracluster medium being well mixed globally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号