首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5825篇
  免费   188篇
  国内免费   89篇
测绘学   168篇
大气科学   546篇
地球物理   1443篇
地质学   2020篇
海洋学   549篇
天文学   755篇
综合类   22篇
自然地理   599篇
  2021年   61篇
  2020年   64篇
  2019年   87篇
  2018年   124篇
  2017年   116篇
  2016年   156篇
  2015年   144篇
  2014年   202篇
  2013年   323篇
  2012年   243篇
  2011年   263篇
  2010年   191篇
  2009年   304篇
  2008年   285篇
  2007年   262篇
  2006年   220篇
  2005年   188篇
  2004年   196篇
  2003年   189篇
  2002年   181篇
  2001年   133篇
  2000年   136篇
  1999年   113篇
  1998年   107篇
  1997年   91篇
  1996年   84篇
  1995年   85篇
  1994年   75篇
  1993年   63篇
  1992年   65篇
  1991年   70篇
  1990年   66篇
  1989年   59篇
  1988年   58篇
  1987年   65篇
  1986年   43篇
  1985年   73篇
  1984年   81篇
  1983年   72篇
  1982年   65篇
  1981年   76篇
  1980年   63篇
  1979年   57篇
  1978年   38篇
  1977年   54篇
  1976年   63篇
  1975年   46篇
  1974年   56篇
  1973年   47篇
  1972年   25篇
排序方式: 共有6102条查询结果,搜索用时 0 毫秒
881.
Active and break phases of the Indian summer monsoon are associated with sea surface temperature (SST) fluctuations at 30–90 days timescale in the Arabian Sea and Bay of Bengal. Mechanisms responsible for basin-scale intraseasonal SST variations have previously been discussed, but the maxima of SST variability are actually located in three specific offshore regions: the South-Eastern Arabian Sea (SEAS), the Southern Tip of India (STI) and the North-Western Bay of Bengal (NWBoB). In the present study, we use an eddy-permitting 0.25° regional ocean model to investigate mechanisms of this offshore intraseasonal SST variability. Modelled climatological mixed layer and upper thermocline depth are in very good agreement with estimates from three repeated expendable bathythermograph transects perpendicular to the Indian Coast. The model intraseasonal forcing and SST variability agree well with observed estimates, although modelled intraseasonal offshore SST amplitude is undere-stimated by 20–30 %. Our analysis reveals that surface heat flux variations drive a large part of the intraseasonal SST variations along the Indian coastline while oceanic processes have contrasted contributions depending of the region considered. In the SEAS, this contribution is very small because intraseasonal wind variations are essentially cross-shore, and thus not associated with significant upwelling intraseasonal fluctuations. In the STI, vertical advection associated with Ekman pumping contributes to ~30 % of the SST fluctuations. In the NWBoB, vertical mixing diminishes the SST variations driven by the atmospheric heat flux perturbations by 40 %. Simple slab ocean model integrations show that the amplitude of these intraseasonal SST signals is not very sensitive to the heat flux dataset used, but more sensitive to mixed layer depth.  相似文献   
882.
Preface     
  相似文献   
883.
In high-elevation lakes of the Sierra Nevada (California), increases in phosphorus (P) supply have been inferred from changes in phytoplankton growth during summer. To quantify rates of sediment P release to high-elevation Sierran lakes, we performed incubations of sediment cores under ambient and reducing conditions at Emerald Lake and analyzed long-term records of lake chemistry for Emerald and Pear lakes. We also measured concentrations of individual P forms in sediments from 50 Sierra Nevada lakes using a sequential fractionation procedure to examine landscape controls on P forms in sediments. On average, the sediments contained 1,445 µg P g?1, of which 5 % was freely exchangeable, 13 % associated with reducible metal hydroxides, 68 % associated with Al hydroxides, and the remaining 14 % stabilized in recalcitrant pools. Multiple linear regression analysis indicated that sediment P fractions were not well correlated with soluble P concentrations. In general, sediments behaved as net sinks for P even under reducing conditions. Our findings suggest that internal P loading does not explain the increase in P availability observed in high-elevation Sierran lakes. Rather, increased atmospheric P inputs and increased P supply via dissolved organic C leaching from soils may be driving the observed changes in P biogeochemistry.  相似文献   
884.
The role of hotter than ambient plume mantle in the formation of a rifted volcanic margin in the northern Arabian Sea is investigated using subsidence analysis of a drill site located on the seismically defined Somnath volcanic ridge. The ridge has experienced > 4 km of subsidence since 65 Ma and lies within oceanic lithosphere. We estimate crustal thickness to be 9.5–11.5 km. Curiously < 400 m of the thermal subsidence occurred prior to 37 Ma, when subsidence rates would normally be at a maximum. We reject the hypothesis that this was caused by increasing plume dynamic support after continental break-up because the size of the thermal anomalies required are unrealistic (> 600 °C), especially considering the rapid northward drift of India relative to the Deccan-Réunion hotspot. We suggest that this reflects very slow lithospheric growth, possibly caused by vigorous asthenospheric convection lasting > 28 m.y., and induced by the steep continent–ocean boundary. Post-rift slow subsidence is also recognized on volcanic margins in the NE Atlantic and SE Newfoundland and cannot be used as a unique indicator of plume mantle involvement in continental break-up.  相似文献   
885.
In the dune area of the Westhoek Nature Reserve, situated in the western Belgian coastal plain, two artificial tidal inlets were made aiming to enhance biodiversity. The infiltration of salt water in these tidal inlets was carefully monitored because a fresh water lens is present in the phreatic dune aquifer. This forms an important source of fresh water which is for instance exploited by a water company. The infiltration was monitored over a period of two years by means of electromagnetic borehole measurements (EM39) and by measurements of fresh water heads and temperature using a large number of observation wells. EM39 observations point to aquifer heterogeneity as a determining factor in the movement of the salt infiltration water. It is shown that part of the infiltration water moves further in the dunes instead of towards the sea. On the long term run, possibility exists that salt water enters the extraction’s capture zone. This issue needs further monitoring and study. Fresh water head and temperature data illustrate that the main period of infiltration is confined to spring tide when large amounts of salt water enter the tidal inlets.  相似文献   
886.
Effects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil (gas_min) at which oxygen stress occurs.First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, gas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale).We analyzed the validity of constant critical values to represent oxygen stress in terms of gas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake).The simulations showed that gas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, gas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress.We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for gas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.  相似文献   
887.
The rapid and high bioaccumulation of mercury in marine mammals and its spatial and temporal variations have been a major puzzle in the Arctic. While extensive efforts have been focussed on the monitoring and chemistry of atmospheric mercury depletion events, a recent mass budget estimate of mercury in the Arctic suggests that we have overlooked the role of the ocean itself. Only through focussed studies on Hg dynamics in the Arctic Ocean under a changing climate are we going to understand what the risk of mercury is to those marine ecosystems and the people who rely on them.  相似文献   
888.
Discretizing the fracture-matrix interface to simulate solute transport   总被引:1,自引:0,他引:1  
This article examines the required spatial discretization perpendicular to the fracture-matrix interface (FMI) for numerical simulation of solute transport in discretely fractured porous media. The discrete-fracture, finite-element model HydroGeoSphere ( Therrien et al. 2005 ) and a discrete-fracture implementation of MT3DMS ( Zheng 1990 ) were used to model solute transport in a single fracture, and the results were compared to the analytical solution of Tang et al. (1981) . To match analytical results on the relatively short timescales simulated in this study, very fine grid spacing perpendicular to the FMI of the scale of the fracture aperture is necessary if advection and/or dispersion in the fracture is high compared to diffusion in the matrix. The requirement of such extremely fine spatial discretization has not been previously reported in the literature. In cases of high matrix diffusion, matching the analytical results is achieved with larger grid spacing at the FMI. Cases where matrix diffusion is lower can employ a larger grid multiplier moving away from the FMI. The very fine spatial discretization identified in this study for cases of low matrix diffusion may limit the applicability of numerical discrete-fracture models in such cases.  相似文献   
889.
Six new 40Ar/39Ar and three cosmogenic 36Cl age determinations provide new insight into the late Quaternary eruptive history of Erebus volcano. Anorthoclase from 3 lava flows on the caldera rim have 40Ar/39Ar ages of 23 ± 12, 81 ± 3 and 172 ± 10 ka (all uncertainties 2σ). The ages confirm the presence of a second, younger, superimposed caldera near the southwestern margin of the summit plateau and show that eruptive activity has occurred in the summit region for 77 ± 13 ka longer than previously thought. Trachyte from “Ice Station” on the eastern flank is 159 ± 2 ka, similar in age to those at Bomb Peak and Aurora Cliffs. The widespread occurrences of trachyte on the eastern flank of Erebus suggest a major previously unrecognized episode of trachytic volcanism. The trachyte lavas are chemically and isotopically distinct from alkaline lavas erupted contemporaneously in the summit region < 5 km away.  相似文献   
890.
Increases in the production rate of cosmogenic radionuclides associated with geomagnetic excursions have been used as global tie-points for correlation between records of past climate from marine and terrestrial archives. We have investigated the relative timing of variations in 10Be production rate and the corresponding palaeomagnetic signal during one of the largest Pleistocene excursions, the Iceland Basin (IB) event (ca. 190 kyr), as recorded in two marine sediment cores (ODP Sites 1063 and 983) with high sedimentation rates. Variations in 10Be production rate during the excursion were estimated by use of 230Thxs normalized 10Be deposition rates and authigenic 10Be/9Be. Resulting 10Be production rates are compared with high-resolution records of geomagnetic field behaviour acquired from the same discrete samples. We find no evidence for a significant lock-in depth of the palaeomagnetic signal in these high sedimentation-rate cores. Apparent lock-in depths in other cores may sometimes be the result of lower sample resolution. Our results also indicate that the period of increased 10Be production during the IB excursion lasted longer and, most likely, started earlier than the corresponding palaeomagnetic anomaly, in accordance with previous observations that polarity transitions occur after periods of reduced geomagnetic field intensity prior to the transition. The lack of evidence in this study for a significant palaeomagnetic lock-in depth suggests that there is no systematic offset between the 10Be signal and palaeomagnetic anomalies associated with excursions and reversals, with significance for the global correlation of climate records from different archives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号