首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62679篇
  免费   1069篇
  国内免费   1387篇
测绘学   2438篇
大气科学   5614篇
地球物理   12843篇
地质学   24955篇
海洋学   3971篇
天文学   9392篇
综合类   2242篇
自然地理   3680篇
  2020年   292篇
  2019年   316篇
  2018年   5250篇
  2017年   4535篇
  2016年   3482篇
  2015年   911篇
  2014年   1111篇
  2013年   1939篇
  2012年   1953篇
  2011年   3932篇
  2010年   3109篇
  2009年   3814篇
  2008年   3239篇
  2007年   3481篇
  2006年   1396篇
  2005年   1325篇
  2004年   1468篇
  2003年   1499篇
  2002年   1345篇
  2001年   994篇
  2000年   1033篇
  1999年   830篇
  1998年   815篇
  1997年   795篇
  1996年   692篇
  1995年   672篇
  1994年   612篇
  1993年   512篇
  1992年   511篇
  1991年   510篇
  1990年   521篇
  1989年   480篇
  1988年   460篇
  1987年   551篇
  1986年   495篇
  1985年   570篇
  1984年   665篇
  1983年   663篇
  1982年   593篇
  1981年   607篇
  1980年   554篇
  1979年   520篇
  1978年   525篇
  1977年   467篇
  1976年   446篇
  1975年   436篇
  1974年   502篇
  1973年   470篇
  1972年   284篇
  1971年   261篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
An exact analysis of Hall current on hydromagnetic free convection with mass transfer in a conducting liquid past an infinite vertical porous plate in a rotating fluid has been presented. Exact solution for the velocity field has been obtained and the effects ofm (Hall parameter),E (Ekman number), andS c (Schmidt number) on the velocity field have been discussed.Nomenclature C species concentration - C w concentration at the porous plate - C species concentration at infinity - C p specific heat at constant pressure - D chemical molecular diffusivity - g acceleration due to gravity - E Ekman number - G Grashof number - H 0 applied magnetic field - j x, jy, jz components of the current densityJ - k thermal conductivity - M Hartman number - m Hall parameter - P Prandtl number - Q heat flux per unit area - S c Sehmidt number - T temperature of the fluid near the plate - T w temperature of the plate - T temperature of the fluid in the free-stream - u, v, w components of the velocity fieldq, - U uniform free stream velocity - w 0 suction velocity - x, y, z Cartesian coordinates - Z dimensionless coordinate normal to the plate. Greek symbols coefficient of volume expansion - * coefficient of expansion with concentration - e cyclotron frequency - dimensionless temperature - * dimensionless concentration - v kinematic viscosity - density of the fluid in the boundary layer - coefficient of viscosity - e magnetic permeability - angular velocity - electrical conductivity of the fluid - e electron collision time - u skin-friction in the direction ofu - v skin-friction in the direction ofv  相似文献   
992.
Near-infrared photometric and low-resolution spectroscopic observations of Aurigae at two phases during the current eclipse are presented. The eclipse depths are found to be wavelength-independent in the infrared right up to 2.5 m. There is no infrared excess at wavelengths shorter than 2.5 m. The light absorbing particles in the eclipsing body must be larger than 10 m in size.  相似文献   
993.
The stability of a plane-stratified slab of perfectly conducting, rotating, compressible, inviscid plasma accelerated by a magnetic field is considered. Exact solutions for the growth rates of the unstable modes are determined for a -law gas when the undisturbed equilibrium is an isothermal atmosphere of semi-infinite extent with no frozen-in field. It is shown that the rotation has no effect on the region of unstable modes which has wavelengths long compared with the atmospheric scale height. On the other side, the growth rates in the presence of rotation are less than those in the absence of rotation for unstable modes.  相似文献   
994.
A catalogue of galactic novae and an atlas of finding charts are under preparation and will be published in 1984. The status of the project is described.Paper presented at the Lembang-Bamberg IAU Colloquium No. 80 on Double Stars: Physical Properties and Generic Relations, held at Bandung, Indonesia, 3–7 June, 1983.  相似文献   
995.
We consider the concept of a quasi-axisymmetric circulation to explore the global scale dynamics of planetary atmospheres. The momentum and energy transport processes in the smaller scales are formulated in terms of anisotropic eddy diffusion. In the early work of Williams and Robinson (1973) these concepts have been introduced to describe the Jovian circulation. Our study differs in that we adopt a spectral model (with vector spherical harmonics) and consider a linear system; we are also examining a different parameter regime. The troposphere of Jupiter is assumed to be weakly convectively unstable, and the circulation is driven by the fundamental component of solar differential heating with a broad maximum at the equator. Mode coupling arising from the Coriolis action is considered in self consistent form, and momentum and energy are allowed to cascade from lower to higher order modes. With a limited number of spherical harmonics, up to order 40, and with homogeneous boundary conditions, the conservation equations are integrated between the 25 and 10–5 bar pressure levels. In addition, a simplified single layer model is discussed which, even though heuristic in nature, elucidates and complements the numerical results. Our analysis leads to the following conclusions: (a) For a negative stability, S 0 = T 0/r + , the energy transports arising from large scale advection by the meridional circulation can amplify the response to the external heating. This crucially depends on the latitudinal structure of the circulation, so that banded wind fields with equatorial zonal jets are preferentially excited. (b) With a negative stability of order S 0 ~ – 10–6 K cm–1, the computed number of positive (and negative) zonal jets is similar to that observed on Jupiter. (c) The observed magnitudes in the zonal wind velocities require that the vertical eddy diffusion coefficient is of the order K r ~ 3 × 105 cm2 s–1, which in turn is consistent with the observed outward flux of energy from the planetary interior (F K r S 0 ); this diffusion rate is also of the right order of magnitude to obey mixing length theory. (d) The ratio between the horizontal and vertical eddy diffusion coefficients (relative mixing factor) is of critical importance. If it is too large ( 105), differential rotation or alternating zonal jets cannot be maintained; if it is too small ( 104), the equator tends to corotate. The intermediate value of order R ~ 5 × 104 is again consistent with mixing length theory. (e) With the above constraints on the transport coefficients, the flow is quasigeostrophic. (f) The meridional circulation is multicellular and of the Ferrel-Thomson type. It is consistent with the observed cloud striations in the Jovian atmosphere. (g) In the stable stratosphere at higher altitudes the fundamental component, directly driven by the Sun, dominates. The circulation degenerates, and broad, positive zonal jets develop at middle latitudes, resembling the observed wind field in the visible cloud cover of the Venus atmosphere.Applied Research Corporation, Landover, Maryland, U.S.A.  相似文献   
996.
The time dependence of Doppler shift and line-center intensity is simultaneously observed for the H emission of three solar prominences, each one during about two hours. Doppler oscillations with periods near one hour and amplitudes between 1 and 2 km s–1 are conspicuously visible in the recordings of all three prominences. Fourier analysis yields periods of 50, 60, and 64 min, as well as slight indications of short periods near 3 and 5 min. No oscillations are found in the line-center brightness.  相似文献   
997.
A statistical analysis is used to determine the properties of metre-wavelength events which are associated with interplanetary type II bursts. It is found that the likelihood of an interplanetary type II burst is greatly increased if: (a) an associated metre-wavelength type II has a starting frequency less than 45 MHz; (b) a strong metre-wavelength continuum is present; (c) the type II contains herringbone fine structure; and (d) the metre-wavelength activity is accompanied by strong, long-lasting H and soft X-ray events.Visiting scientist at Division of Radiophysics, January 1983; previous address - NASA/Goddard Space Flight Center, Greenbelt, Maryland.  相似文献   
998.
This paper provides a comprehensive analysis of the dynamics of the flow of minor ion species in the solar wind under the combined influences of gravity, Coulomb friction (with protons), rotational forces (arising from the Sun's rotation and the interplanetary spiral magnetic field) and wave forces (induced in the minor ion flow by Alfvén waves propagating in the solar wind). It is assumed that the solar wind can be considered as a proton-electron plasma which is, to a first approximation, unaffected by the presence of minor ions. In the dense hot region near the Sun Coulomb friction accelerates minor ions outwards against the gravitational force, part of which is cancelled by the charge-separation electric field. Once the initial acceleration has been achieved, wave and rotational forces assist Coulomb friction in further increasing the minor ion speed so that it becomes comparable with, or perhaps even exceeds, the solar wind speed. A characteristic feature of the non-resonant wave force is that it tends to bring the minor ion flow into an equilibrium where the radial speed matches the Alfvén speed relative to the solar wind speed, whereas Coulomb friction and rotational forces tend to bring the flow into an equilibrium where the radial speed of the minor ions equals the solar wind speed. Therefore, provided that there is sufficient wave energy and Coulomb friction is weak, the minor ion speed can be trapped between these two speeds. This inteststing result is in qualitative agreement with observational findings to the effect that the differential flow speed between helium ions and protons is controlled by the ratio of the solar wind expansion time to the ion-proton collision time. If the thermal speeds of the protons and minor ions are small compared to the Alfvén speed, two stable equilibrium speeds can exist because the rapid decrease in the Coulomb cross-section with increasing differential flow speed allows the non-resonant wave force to balance Coulomb friction at more than one ion speed. However, it must be emphasized that resonant wave acceleration and/or strong ion partial pressure gradients are required to achieve radial speeds of minor ions in excess of the proton speed, since, as is shown in Section 4, the non-resonant wave acceleration on protons and minor ions are identical when their radial speeds are the same, with the result that, in the solar wind, non-resonant wave acceleration tends (asymptotically) to equalize minor ion and proton speeds.  相似文献   
999.
Extensive photoelectric lightcurves of the asteroids 128 Nemesis and 393 Lampetia show for both objects extremely long rotational periods, the longest known to date for minor planets. For 393 Lampetia the combined results suggest with high probability a period of 38.7 hr with a maximal amplitude of 0.14 mag; a double-wave characteristic of the lightcurve must be assumed. For 128 Nemesis the complete double-wave lightcurve was observed and a period of 39.0 hr with a total amplitude of only 0.10 mag was deduced. Observations of 128 Nemesis confirm without doubt the presence of small-scale features of amplitude 0.01 to 0.02 mag, corresponding to small topographic features of about 15 km in height and width on the surface.  相似文献   
1000.
The baroclinic stability of Jupiter's zonal flow is investigated using a model consisting of two continuously stratified fluid layers. The upper layer, containing a zonal shear flow and representing the Jovian cloudy regions above p ~ 5 bars, is the same as Eady's (1949) model for the Earth. The lower layer has a relatively large but finite depth with a quiescent basic state, representing the deep Jovian fluid bulk below p ~ 5 bars. Due to the presence of the lower layer, the linearized non-dimensional growth rates are drastically reduced from the O(1) growth rates of the original Early model. Only very long wavelengths relative to the upper fluid's radius of deformation L1 are unstable. Eddy transports of heat are also reduced relative to estimates based on scaling arguments alone. Since the hydrostatic approximation for the lower-layer perturbation breaks down at great depths, a second model is presented in which energy propagates downward in an infinitely deep lower fluid obeying the full linearized fluid equations. In this model, the growth rates are again very small, but now all wavelengths are unstable with maximum growth rates occurring for wavelengths O(1) relative to L1. These results illustrate the importance for the upper-layer meteorology of the interface boundary condition with the lower fluid, which is radically different from the rigid lower boundary of the Earth's troposphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号