首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
测绘学   1篇
地球物理   2篇
地质学   14篇
海洋学   5篇
天文学   10篇
自然地理   1篇
  2024年   1篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
  1984年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
This study was designed to examine effects of low dissolved oxygen on finfish, lobster, and squid under field conditions in western Long Island Sound. The relationship between bottom dissolved oxygen (DO) and catch was examined for effects on abundance, numbers of species, and mean length, for trawl sites throughout the sound. Examination of mean catch per tow, and species number per tow, showed that both abundance and diversity decreased markedly with bottom DO, with dramatic declines at sites with DO<2 mg l?1. Of 18 species examined, 15 were found to occur with greater frequency at sites with DO>3 mg l?1 compared to sites with <2 mg l?1, and three of these species occurred significantly less frequency at a DO of 2–3 mg l?1. Trawl samples taken in the Narrows west of Greenwich, an area which chronically experiences summer hypoxia (DO<3 mg l?1) consistently yielded below average species number during hypoxic events. However, when DO was>3 mg l?1, 13 of 14 tows had above average species number. Abundance of five common species at sites>3 mg l?1 DO were significantly higher than at sites <3 mg l?1 DO in this area. Lobster was the only species not showing this DO threshold. Patterns in abundance vs DO for squid, bluefish, and butterfish suggest that these species are among the most sensitive to hypoxia. Only one of the four examined species, winter flounder, showed a decrease in mean length with DO. Scup, bluefish, and lobster lengths did not vary significantly with respect to dissolved oxygen.  相似文献   
12.
Abstract— The known encounter velocity (6.1 kms?1) and particle incidence angle (perpendicular) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild‐2 fall within a range that allows simulation in laboratory light‐gas gun (LGG) experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminum foil components of the Stardust collector. Buckshot of a wide size, shape, and density range of mineral, glass, polymer, and metal grains, have been fired to impact perpendicularly on samples of Stardust Al 1100 foil, tightly wrapped onto aluminum alloy plate as an analogue of foil on the spacecraft collector. We have not yet been able to produce laboratory impacts by projectiles with weak and porous aggregate structure, as may occur in some cometary dust grains. In this report we present information on crater gross morphology and its dependence on particle size and density, the pre‐existing major‐ and trace‐element composition of the foil, geometrical issues for energy dispersive X‐ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density, and composition for particles impacted on the Stardust aluminum foils.  相似文献   
13.
Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1,500 m are estimated from the spring-water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2,000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2,000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.  相似文献   
14.
Abstract– Samples returned by the Stardust mission from comet 81P/Wild 2 provide an unequaled opportunity to investigate cometary formation and evolution. Crystalline silicates have been identified in impact craters in Stardust Al foil, yet their origin is ambiguous. They may be original cometary components, or they may have grown from melt generated by impact. We have now studied experimental impacts of the calcium silicate mineral wollastonite, using scanning and transmission electron microscopy to document the relationship between impact feature shape and crystal lattice orientation in impact residue. Wollastonite can have a characteristic acicular habit, forming crater shapes that indicate crystal orientation upon impact. From extracted impact residue, we determined the lattice orientation of crystalline material for comparison with the whole particle orientation. We assume that crystallization from melt, without surviving seed nuclei, should result in randomly oriented crystallite growth, with no preferred direction for individual crystals. However, we find that the majority of crystalline material in the residue retains b‐axis orientation parallel to the long axis of the crater form. This, together with impact parameter calculations and lack of Al incorporation by the residue (suggesting melting did not occur), indicates that these crystals and, by analogy, the majority of Al‐free crystalline silicates in Stardust foil, are surviving remnants of the impactor. Furthermore, amorphous wollastonite residue probably did not form via melting and subsequent quenching, but instead by high‐pressure amorphization or degradation of unquenchable phases. Finally, one crystal studied appears to be a new high‐pressure/temperature polymorph of CaSiO3, indicating that such polymorphs may be observed in Stardust residues in craters.  相似文献   
15.
We evaluated a hierarchical framework for seagrass monitoring in two estuaries in the northeastern USA: Little Pleasant Bay, Massachusetts, and Great South Bay/Moriches Bay, New York. This approach includes three tiers of monitoring that are integrated across spatial scales and sampling intensities. We identified monitoring attributes for determining attainment of conservation objectives to protect seagrass ecosystems from estuarine nutrient enrichment. Existing mapping programs provided large-scale information on seagrass distribution and bed sizes (tier 1 monitoring). We supplemented this with bay-wide, quadrat-based assessments of seagrass percent cover and canopy height at permanent sampling stations following a spatially distributed random design (tier 2 monitoring). Resampling simulations showed that four observations per station were sufficient to minimize bias in estimating mean percent cover on a bay-wide scale, and sample sizes of 55 stations in a 624-ha system and 198 stations in a 9,220-ha system were sufficient to detect absolute temporal increases in seagrass abundance from 25% to 49% cover and from 4% to 12% cover, respectively. We made high-resolution measurements of seagrass condition (percent cover, canopy height, total and reproductive shoot density, biomass, and seagrass depth limit) at a representative index site in each system (tier 3 monitoring). Tier 3 data helped explain system-wide changes. Our results suggest tiered monitoring as an efficient and feasible way to detect and predict changes in seagrass systems relative to multi-scale conservation objectives.  相似文献   
16.
The Wangrah Suite granites (Lachlan Fold Belt, Australia) reflect different stages of differentiation in the magmatic history of an A-type plutonic suite. In this study we use experimentally determined phase equilibria of four natural A-type granitic compositions of the Wangrah Suite to constrain phases and phase compositions involved in fractionation processes. Each composition represents a distinct granite intrusion in the Wangrah Suite. The intrusions are the Danswell Creek (DCG), Wangrah (WG), Eastwood (EG) and Dunskeig Granite (DG), ordered from “most mafic” to “most felsic” by increasing SiO2 and decreasing FeOtotal.

Experimental investigation show that the initial water content in melts from DCG is between 2–3 wt. % H2O. If the DCG is viewed as the parental magma for the Wangrah Suite, then (1) fractionation of magnetite, orthopyroxene and plagioclase ( 20 wt. %) of the DCG composition, leads to compositions similar to that of the EG; (2) further fractionation of plagioclase, quartz, K-feldspar and biotite ( 40 wt. %) from the EG composition, leads to the DG composition. These fractionation steps can occur nearly isobarically and are confirmed by bulk rock Ba, Sr, Rb and Zr concentrations.

In contrast, the generation of the most abundant WG composition cannot be explained by fractional crystallisation from the DCG at isobaric conditions because of the high K2O content of this granite. Magma Mixing could be the process to explain the chemical distinctiveness of the Wangrah Granite from all the other granites of the Wangrah Suite.  相似文献   

17.
Abstract– Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust particles (IDPs) and Wild 2 samples. Chemical analyses indicate Wild 2 sulfides are fundamentally different from those in IDPs. However, as Wild 2 dust was collected via impact into capture media at approximately 6.1 km s?1, it is unclear whether this is due to variation in preaccretional/parent body processes experienced by these materials or due to heating and alteration during collection. We investigated alteration in pyrrhotite and pentlandite impacted into Stardust flight spare Al foils under encounter conditions by comparing scanning and transmission electron microscope (SEM, TEM) analyses of preimpact and postimpact samples and calculating estimates of various impact parameters. SEM is the primary method of analysis during initial in situ examination of Stardust foils, and therefore, we also sought to evaluate the data obtained by SEM using insights provided by TEM. We find iron sulfides experience heating, melting, separation, and loss of S, and mixing with molten Al. These results are consistent with estimated peak pressures and temperatures experienced (approximately 85 GPa, approximately 2600 K) and relative melting temperatures. Unambiguous identification of preserved iron sulfides may be possible by TEM through the location of Al‐free regions. In most cases, the Ni:Fe ratio is preserved in both SEM and TEM analyses and may therefore also be used to predict original chemistry and estimate mineralogy.  相似文献   
18.
This is a summary of the conversation among scholars attending the special session on "Responsibility, Opportunity, and Vision for Higher Education in Urban and Regional Carbon Management" at the First International Conference on Carbon Management at Urban and Regional Levels: Connecting Development Decisions to Global Issues in Mexico City Sept. 4–8, 2006. It includes The Declaration for Carbon Management Education, agreed upon by the participants. Obstacles to such a vision were discussed along with exemplar models of transdisciplinary curricula and suggestions for scholarship.  相似文献   
19.
Comet 81P/Wild 2 samples returned by NASA's Stardust mission provide an unequalled opportunity to study the contents of, and hence conditions and processes operating on, comets. They can potentially validate contentious interpretations of cometary infrared spectra and in situ mass spectrometry data: specifically the identification of phyllosilicates and carbonates. However, Wild 2 dust was collected via impact into capture media at ~6 km s?1, leading to uncertainty as to whether these minerals were captured intact, and, if subjected to alteration, whether they remain recognizable. We simulated Stardust Al foil capture conditions using a two‐stage light‐gas gun, and directly compared transmission electron microscope analyses of pre‐ and postimpact samples to investigate survivability of lizardite and cronstedtite (phyllosilicates) and calcite (carbonate). We find the phyllosilicates do not survive impact as intact crystalline materials but as moderately to highly vesiculated amorphous residues lining resultant impact craters, whose bulk cation to Si ratios remain close to that of the impacting grain. Closer inspection reveals variation in these elements on a submicron scale, where impact‐induced melting accompanied by reducing conditions (due to the production of oxygen scavenging molten Al from the target foils) has resulted in the production of native silicon and Fe‐ and Fe‐Si‐rich phases. In contrast, large areas of crystalline calcite are preserved within the calcite residue, with smaller regions of vesiculated, Al‐bearing calcic glass. Unambiguous identification of calcite impactors on Stardust Al foil is therefore possible, while phyllosilicate impactors may be inferred from vesiculated residues with appropriate bulk cation to Si ratios. Finally, we demonstrate that the characteristic textures and elemental distributions identifying phyllosilicates and carbonates by transmission electron microscopy can also be observed by state‐of‐the‐art scanning electron microscopy providing rapid, nondestructive initial mineral identifications in Stardust residues.  相似文献   
20.
The behavioral adaptations of the meadow vole,Microtus pennsylvanicus, to tidal salt marshes were examined during a mark-recapture study and snap-trap survey of three tidal salt marshes and four inland sites. Voles were captured throughout the marsh profile in all months except February, and 60 to 70% of the marked population was considered resident to the marsh from June through December. Stomach analysis indicated that the stems of halophytes are the largest component of the marsh voles' diet. During the driest summer months seeds of the halophytes became an important alternate food. Upland voles showed no seasonal dietary alteration, and the pattern of seasonal changes in body weight differed between the two habitats. A body fat index used to measure general nutrition was found to vary seasonally but not between habitats. The selective cropping of only grass stems may result in increased formation of detritus and acceleration of nutrient turnover in the marsh-estuary ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号