首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   6篇
  国内免费   2篇
测绘学   5篇
大气科学   3篇
地球物理   30篇
地质学   105篇
海洋学   20篇
天文学   47篇
自然地理   14篇
  2024年   1篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   10篇
  2013年   8篇
  2012年   6篇
  2011年   14篇
  2010年   9篇
  2009年   14篇
  2008年   7篇
  2007年   15篇
  2006年   12篇
  2005年   13篇
  2004年   12篇
  2003年   8篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
  1967年   1篇
  1890年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
41.
The chemistry of pore water (particularly pH and ionic strength) is an important property of clay rocks being considered as host rocks for long-term storage of radioactive waste. Pore waters in clay-rich rocks generally cannot be sampled directly. Instead, their chemistry must be found using laboratory-measured properties of core samples and geochemical modelling. Many such measurements have been made on samples from the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL). Several boreholes in that URL yielded water samples against which pore water models have been calibrated. Following a first synthesis report published in 2003, this paper presents the evolution of the modelling approaches developed within Mont Terri URL scientific programs through the last decade (1997-2009). Models are compared to the composition of waters sampled during dedicated borehole experiments. Reanalysis of the models, parameters and database enabled the principal shortcomings of the previous modelling efforts to be overcome. The inability to model the K concentrations correctly with the measured cation exchange properties was found to be due to the use of an inappropriate selectivity coefficient for Na-K exchange; the inability to reproduce the measured carbonate chemistry and pH of the pore waters using mineral-water reactions alone was corrected by considering clay mineral equilibria. Re-examination of the measured Ca/Mg activity ratios and consideration of the mineralogical composition of the Opalinus Clay suggested that Ca/Mg cation exchange rather than dolomite saturation may control the ratio of these ions in solution. This re-examination also suggests that the Ca/Mg ratio decreases with increasing pore-water salinity. Several possible reasons for this are proposed. Moreover, it is demonstrated that feldspar equilibria must not be included in Opalinus Clay modelling because feldspars are present only in very small quantities in the formation and because Na/K ratios measured in pore water samples are inconsistent with feldspar saturation. The principal need to improve future modelling is additional or better data on rock properties, in particular: (i) a more detailed identification of phases in the Opalinus Clay that include redox-sensitive elements together with evaluation of their thermodynamic properties; (ii) an improved understanding of the distribution of celestite throughout the Opalinus Clay for Sr/SO4 concentrations control; (iii) improvements in analytic and thermodynamic data for Ca-Mg rock cation exchange and mineral chemical properties and (iv) the measurement of composition and stability constants of clay minerals actually present in the formation.  相似文献   
42.
43.
The Malay Peninsula lies on two continental blocks, Sibumasu and East Malaya, which are intruded by granitoids in two provinces: the Main Range and Eastern. Previous models propose that Permian–Triassic granitoids are subduction-related and syn-to post-collisional. We present 752 U–Pb analyses that were carried out on zircons from river sands in the Malay Peninsula; of these, 243 grains were selected for Hf-isotope analyses. Our data suggest a more complex Sibumasu–East Malaya collision history. 176Hf/177Hfi ratios reveal that Permian–Triassic zircons were sourced from three magmatic suites: (a) Permian crustally-derived granitoids, (b) Early-Middle Triassic granitoids with mixed mantle–crust sources, and (c) Late Triassic crustally-derived granitoids. This suggests three Permian–Triassic episodes of magmatism in the Malay Peninsula, two of which occurred in the Eastern Province. Although the exact timing of the Sibumasu–East Malaya collision remains unresolved, current data suggest that it occurred before the Late Triassic, probably in Late Permian–Early Triassic. Our data also indicate that Sibumasu and East Malaya basements are chronologically heterogeneous, but predominantly of Proterozoic age. Some basement may be Neoarchaean but there is no evidence for basement older than 2.8 Ga. Finally, we show that Hf-isotope signatures of Triassic zircons can be used as provenance indicators.  相似文献   
44.
A range of independently characterised reference materials (RMs) for LA‐ICP‐MS, used for the determination of the platinum‐group elements (PGE) and Au in a sulfide matrix, were analysed and compared: 8b, PGE‐A, NiS‐3, Po727‐T1, Po724‐T and the Lombard meteorite. The newly developed RM NiS‐3 was used as the RM for the calibration of all LA‐ICP‐MS analyses and the measured concentrations of the other RMs compared against their published concentrations. This data were also used to assess the consistency of concentrations calibrated against the different RMs. It was found that Po727‐T1 and 8b produced results that were comparable, within uncertainty, for all elements. Po727‐T1 also produced consistent results with NiS‐3 for all elements. All other RMs showed differences for some elements, especially Ru in Po724‐T, and Os, Ir and Au in PGE‐A. The homogeneity of the PGE and Au in each RM was assessed, by comparing the precision of multiple LA‐ICP‐MS spot analyses with the average uncertainty of the signal. Po724‐T, Po727‐T1 and the Lombard meteorite were found to be homogeneous for all elements, but 8b, PGE‐A and NiS‐3 were heterogeneous for some elements. This is the first direct comparison between a range of independently characterised PGE and Au LA‐ICP‐MS RMs.  相似文献   
45.
Source depletion and extent of melting in the Tongan sub-arc mantle   总被引:3,自引:0,他引:3  
The fluid immobile High Field Strength Elements (HFSE) Nb and Ta can be used to distinguish between the effects of variable extents of melting and prior source depletion of the Tongan sub-arc mantle. Melting of spinel lherzolite beneath the Lau Basin back-arc spreading centres has the ability to fractionate Nb from Ta due to the greater compatibility of the latter in clinopyroxene. The identified spatial variation in plate velocities and separation of melt extraction zones, combined with extremely depleted lavas make Tonga an ideal setting in which to test models for arc melt generation and the role of back-arc magmatism.We present new data acquired by laser ablation-ICPMS of fused sample glasses produced without the use of a melt fluxing agent. The results show an arc trend towards strongly sub-chondritic Nb/Ta (< 17) with values as low as 7.2. Melting models show that large degree melts of depleted MORB mantle fail to reproduce the observed Nb/Ta. Alternatively, incorporation of residual back-arc mantle that has undergone less than 1% melting into the sub-arc melting regime reproduces arc values. However, the extent of partial melting required to produce the composition of the Lau Basin back-arc basalts averages 7%. This apparent discrepancy can be explained if only the lowermost 4 km of the residua from the mantle melt column beneath the back-arc is added to the source of arc magmas. We have identified that the degree of arc/back-arc coupling displayed in the rock record provides an index of the depth of hydrous melting beneath the arc. In this case, this would imply a depth of ~ 75 km for generation of arc magmas, indicating that hydrous melting in the mantle wedge is triggered by the breakdown of hydrous phases in the subducting slab.  相似文献   
46.
We report contemporaneous multi-wavelength interferometric imaging of the red supergiant star Betelgeuse ( α Orionis), using the Cambridge Optical Aperture Synthesis Telescope (COAST) and the William Herschel Telescope (WHT), at wavelengths of 700, 905 and 1290 nm. We find a strong variation in the apparent symmetry of the stellar brightness distribution as a function of wavelength. At 700 nm the star is highly asymmetric, and can be modelled as the superposition of three bright spots on a strongly limb-darkened disc. However, at 905 nm only a single low-contrast feature is visible and at 1290 nm the star presents a featureless symmetric disc. The change in spot contrast with wavelength is consistent with a model in which the bright spots represent unobscured areas of elevated temperature, owing perhaps to convection, on a stellar disc that itself has a different appearance, i.e. geometrical extent and limb-darkening profile, at different wavelengths. The featureless centre-to-limb brightness profile seen at 1290 nm is consistent with this model and suggests that future interferometric monitoring of the star to quantify the size changes associated with radial velocity variations should be performed at similar wavelengths in the near-infrared.  相似文献   
47.
The microstructures, major- and trace-element compositions of minerals and electron backscattered diffraction (EBSD) maps of high- and low-Cr# [spinel Cr# = Cr3+/(Cr3+ + Al3+)] chromitites and dunites from the Zedang ophiolite in the Yarlung Zangbo Suture (South Tibet) have been used to reveal their genesis and the related geodynamic processes in the Neo-Tethyan Ocean. The high-Cr# (0.77–0.80) chromitites (with or without diopside exsolution) have chromite compositions consistent with initial crystallization by interaction between boninitic magmas, harzburgite and reaction-produced magmas in a shallow, mature mantle wedge. Some high-Cr# chromitites show crystal-plastic deformation and grain growth on previous chromite relics that have exsolved needles of diopside. These features are similar to those of the Luobusa high-Cr# chromitites, possibly recycled from the deep upper mantle in a mature subduction system. In contrast, mineralogical, chemical and EBSD features of the Zedang low-Cr# (0.49–0.67) chromitites and dunites and the silicate inclusions in chromite indicate that they formed by rapid interaction between forearc basaltic magmas (MORB-like but with rare subduction input) and the Zedang harzburgites in a dynamically extended, incipient forearc lithosphere. The evidence implies that the high-Cr# chromitites were produced or emplaced in an earlier mature arc (possibly Jurassic), while the low-Cr# associations formed in an incipient forearc during the initiation of a new episode of Neo-Tethyan subduction at ~130–120 Ma. This two-episode subduction model can provide a new explanation for the coexistence of high- and low-Cr# chromitites in the same volume of ophiolitic mantle.  相似文献   
48.
The Ramgarh–Munsiari thrust is a major orogen-scale fault that extends for more than 1,500 km along strike in the Himalayan fold-thrust belt. The fault can be traced along the Himalayan arc from Himachal Pradesh, India, in the west to eastern Bhutan. The fault is located within the Lesser Himalayan tectonostratigraphic zone, and it translated Paleoproterozoic Lesser Himalayan rocks more than 100 km toward the foreland. The Ramgarh–Munsiari thrust is always located in the proximal footwall of the Main Central thrust. Northern exposures (toward the hinterland) of the thrust sheet occur in the footwall of the Main Central thrust at the base of the high Himalaya, and southern exposures (toward the foreland) occur between the Main Boundary thrust and Greater Himalayan klippen. Although the metamorphic grade of rocks within the Ramgarh–Munsiari thrust sheet is not significantly different from that of Greater Himalayan rock in the hanging wall of the overlying Main Central thrust sheet, the tectonostratigraphic origin of the two different thrust sheets is markedly different. The Ramgarh–Munsiari thrust became active in early Miocene time and acted as the roof thrust for a duplex system within Lesser Himalayan rocks. The process of slip transfer from the Main Central thrust to the Ramgarh–Munsiari thrust in early Miocene time and subsequent development of the Lesser Himalayan duplex may have played a role in triggering normal faulting along the South Tibetan Detachment system.  相似文献   
49.
The western part of the Ronda peridotite massif (Southern Spain) consists mainly of highly foliated spinel-peridotite tectonites and undeformed granular peridotites that are separated by a recrystallization front. The spinel tectonites are interpreted as volumes of ancient subcontinental lithospheric mantle and the granular peridotites as a portion of subcontinental lithospheric mantle that underwent partial melting and pervasive percolation of basaltic melts induced by Cenozoic asthenospheric upwelling. The Re–Os isotopic signature of sulfides from the granular domain and the recrystallization front mostly coincides with that of grains in the spinel tectonites. This indicates that the Re–Os radiometric system in sulfides was highly resistant to partial melting and percolation of melts induced by Cenozoic lithospheric thermal erosion. The Re–Os isotopic systematics of sulfides in the Ronda peridotites thus mostly conserve the geochemical memory of ancient magmatic events in the subcontinental lithospheric mantle. Os model ages record two Proterozoic melting episodes at ~1.6 to 1.8 and 1.2–1.4 Ga, respectively. The emplacement of the massif into the subcontinental lithospheric mantle probably coincided with one of these depletion events. A later metasomatic episode caused the precipitation of a new generation of sulfides at ~0.7 to 0.9 Ga. These Proterozoic Os model ages are consistent with results obtained for several mantle suites in Central/Western Europe and Northern Africa as well as with the Nd model ages of the continental crust of these regions. This suggests that the events recorded in mantle sulfides of the Ronda peridotites reflect different stages of generation of the continental crust in the ancient Gondwana supercontinent.  相似文献   
50.
This study represents the first detailed investigation of platinum-group elements (PGEs) in road-deposited sediment (RDS) in Hawaii, USA. Thirty-three sample locations, in two urban watersheds in Honolulu, Oahu, Hawaii were sampled. The <63 μm fraction of RDS was digested with aqua regia, followed by matrix separation with Dowex AG50-X8 cation exchange resin. PGEs were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) equipped with a desolvating nebulizer. Concentrations of Rh, Pd and Pt in residential streets reached 64, 105 and 506 ng/g, respectively. Maximum enrichment ratios, computed as RDS concentrations relative to baseline values, exceeded 400, indicating a significant anthropogenic signal with the sequence Rh > Pt > Pd. Iridium concentrations were uniformly low <1 ng/g, and enrichment ratios support a geogenic source. Significant interelement PGE correlations (Pd–Pt–Rh), combined with the magnitude of PGE pair-wise ratios (Pt/Pd, Pt/Rh and Pd/Rh), and relative percentages comparable to European RDS and roadside soil in Indiana, USA all suggest an automobile source. Attrition of PGE-loaded automobile catalytic converters and subsequent loss to the environment by exhaust emissions explains the significant environmental signal of PGEs in road environments of Hawaii. Further PGE work is required to quantify urban transport paths as PGEs are known to bioaccumulate, cause cellular damage and may have detrimental human health effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号