首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4325篇
  免费   171篇
  国内免费   92篇
测绘学   158篇
大气科学   295篇
地球物理   1129篇
地质学   1526篇
海洋学   383篇
天文学   696篇
综合类   21篇
自然地理   380篇
  2022年   30篇
  2021年   48篇
  2020年   47篇
  2019年   63篇
  2018年   86篇
  2017年   105篇
  2016年   120篇
  2015年   110篇
  2014年   138篇
  2013年   260篇
  2012年   133篇
  2011年   232篇
  2010年   164篇
  2009年   225篇
  2008年   242篇
  2007年   209篇
  2006年   193篇
  2005年   173篇
  2004年   136篇
  2003年   162篇
  2002年   136篇
  2001年   84篇
  2000年   87篇
  1999年   61篇
  1998年   69篇
  1997年   57篇
  1996年   65篇
  1995年   52篇
  1994年   55篇
  1993年   42篇
  1992年   48篇
  1991年   42篇
  1990年   35篇
  1989年   37篇
  1988年   39篇
  1987年   41篇
  1986年   44篇
  1985年   59篇
  1984年   49篇
  1983年   50篇
  1982年   53篇
  1981年   59篇
  1980年   49篇
  1979年   39篇
  1978年   48篇
  1977年   31篇
  1976年   30篇
  1975年   26篇
  1974年   38篇
  1973年   31篇
排序方式: 共有4588条查询结果,搜索用时 15 毫秒
371.
The properties of rapidly changing inhomogeneities visible in the H and K lines above sunspot umbrae are described. We find as properties for these ‘Umbral Flashes’:
  1. A lifetime of 50 sec. The light curve is asymmetrical, the increase is faster than the decrease in brightness.
  2. A diameter ranging from the resolution limit up to 2000 km.
  3. A tendency to repeat every 145 sec.
  4. A ‘proper motion’ of 40 km/sec generally directed towards the penumbra.
  5. A Doppler shift of 6 km/sec.
  6. A magnetic field of 2100 G.
  7. A decrease in this field of 12 G/sec. This decrease is probably related to the flash motion.
  8. At any instant an average of 3–5 flashes in a medium-sized umbra. A weak feature often persists in the umbra after the flash. This post-flash structure initially shows a blue shift, but 100–120 sec after the flash, it shows a rapid red shift just before the flash repeats.
  相似文献   
372.
373.
The effects of the passage of a spiral arm through the disc of the giant Virgo Sc galaxy NGC 4321 are investigated with Hubble Space Telescope WFPC2 images in two colours. Concentrating on a portion of the southern spiral arm of NGC 4321, we have applied a new program to solve for the star formation histories in the arm and interarm regions separately. The observational uncertainties and the variable crowding across the spiral arm are taken into account using the results of artificial star tests. In the interarm regions the data are consistent with a constant star formation rate for the last 50 Myr while the stars in the arm region show a star formation rate four times larger than in the interarm regions in the last 5 Myr.  相似文献   
374.
Minerals of the triphylite-lithiophilite, Li(Fe, Mn)PO4, and the triplite-zwieselite-magniotriplite series, (Mn, Fe, Mg)2PO4F, occur in the late stage period of pegmatite evolution. Unfortunately, neither are the genetic relationships between these phosphates fully understood nor are thermodynamic data known. Consequently, phosphate associations and assemblages from 8 granitic pegmatites — Clementine II, Rubicon II and III, and Tsaobismund (Namibia); Hagendorf-Süd and Rabenstein (Germany); Valmy (France); Viitaniemi (Finland) — have been tested for compositional zoning and intercrystalline partitioning of main elements by electron microprobe techniques. Although the selected pegmatites display varying degrees of fractionation, and the intergrowth textures indicate different genetic relationships between the phosphates, the plots of mole fractions X Fe=Fe/(Fe+Mn+Mg+Ca), X Mn=Mn/(Fe+Mn+Mg+Ca), and X Mg=Mg/(Fe+Mn+Mg+Ca) can be fitted relatively well with smooth curves in Roozeboom diagrams. Their deviations from symmetrical distribution curves are mainly dependent upon X Mg or X Ca, and upon non-ideal solutions. Surprisingly small differences between the partition coefficients were detected for intergrowths of different origin. However, the partitioning of shared components among coexisting phases is clearly dependent upon the conditions of formation. Compositional zoning is observed only when both Fe–Mn phosphates are intergrown mutually or with other Fe–Mn–Mg mineral solid-solutios. Thus, the zoning does not seem to be due to continuous crystallization, but to later diffusion processes. The triplite structure has preference for Mn, Mg, and Ca, while Fe prefers minerals of the triphylite series. A quantification of main element fractionation between minerals of the triphylite and the triplite series is possible in the cases where diffusion can be excluded. For the Fe/(Fe+Mn) ratios of core compositions an equation with a high correlation coefficient (R=0.988) was determined: Fe/(Fe+Mn)Tr=[Fe/(Fe+Mn)Li]/{2.737-(1.737)[Fe/(Fe+Mn)Li]} (Tr=triplite series, Li=triphylite series). Consequently, the Fe/(Fe+Mn) ratio of the triplite series can now also be used in the interpretation of pegmatite evolution, just like that of the triphylite series which has been successfully applied in the past.  相似文献   
375.
Grain size and sorting represent two key parameters when characterizing sediments or modelling beach morphology and sediment transport. Traditionally, an average value for grain size or sorting is often assumed for the entire area, determined from only a few sediment samples, ignoring any spatial (or temporal) variability in sediment characteristics. This contribution uses a data set of physical surface sediment samples from 53 beach locations around the south‐west peninsula of the United Kingdom, in addition to bi‐monthly, high spatial resolution (mean 240 samples) digital grain‐size surveys from a high‐energy, oceanic, sandy beach (Perranporth, North Cornwall). Systematic spatial variations in grain size and sorting were consistently observed in the seaward direction across the intertidal zone of sandy beaches, with grain‐sizes coarsening and sorting improving by up to 51·7% and 64·3%, respectively. This variability was deterministically related to the time‐averaged, antecedent‐adjusted energy dissipated by breaking waves, with the observed maximum grain‐size and sorting values correlating with the location of peak wave energy dissipation (r2 = 0·998, < 0·01).  相似文献   
376.
377.
Longitudinal (linear) sand dunes of the Simpson and Strzelecki dunefields in eastern central Australia present a paradox. Low levels of activity today stand in contrast to luminescence dating which has repeatedly shown deep deposits of sand on dune crests dating to within the late Holocene. In order to investigate the nature of dune activity in the Simpson–Strzelecki dunefield, vegetation and sand mobility were investigated by detailed vegetation survey and measurement of rippled area and loose sand depth of dunes at three sites along a climatic gradient. The response of both vegetation and sand movement to inter-annual climate variability was examined by repeat surveys of two sites in drought and non-drought conditions. Projected plant cover and plant + crust cover were found to have inverse linear relationships with rippled area and the area of deep loose sand. No relationship was found between these measures of sand movement and the plant frontal area index. A negative exponential relationship between equivalent mobile sand depth on dune surfaces and both vascular plant cover and vascular + crust cover was also found. There is no simple threshold of vegetation cover below which sand transport begins. Dunes with low perennial plant cover may form small dunes with slip faces leading to a positive feedback inhibiting ephemeral plant growth in wet years and accelerating sand transport rates. The linear dunefields are largely within the zone in which plant cover is sufficient to enforce low sand transport rates, and in which there is a strong response of vegetation and sand transport to inter-annual variation in rainfall. Both ephemeral plants (mostly forbs) and crust were found to respond rapidly to large (> 20 mm/month) rainfall events. On millennial time-scales, the level of dune activity is controlled by vegetation cover and probably not by fluctuations of wind strength. Land use or extreme, decadal time-scale, drought may destabilise dunes by removing perennial plant cover, accelerating wind erosion.  相似文献   
378.
An evolutionary model of sedimentary environments since late Marine Isotope Stage 3 (late MIS 3, i.e., ca. 39 cal ka BP) along the middle Jiangsu coast is presented based upon a reinterpretation of core 07SR01, new correlations between adjacent published cores, and shallow seismic profiles recovered in the Xiyang tidal channel and adjacent northern sea areas. Geomorphology, sedimentology, radiocarbon dating and seismic and sequence stratigraphy are combined to confirm that environmental changes since late MIS 3 in the study area were controlled primarily by sea-level fluctuations, sediment discharge of paleo-rivers into the South Yellow Sea (SYS), and minor tectonic subsidence, all of which impacted the progression of regional geomorphic and sedimentary environments (Le., coastal barrier island freshwater lacustrine swamp, river floodplain, coastal marsh, tidal sand ridge, and tidal channel). This resulted in the formation of a fifth-order sequence stratigraphy, comprised of the parasequence of the late stage of the last interstadial (Para-Sq2), including the highstand and forced regressive wedge system tracts (HST and FRWST), and the parasequence of the postglacial period (Para-Sql), including the transgressive and highstand system tracts (TST and HST). The tidal sand ridges likely began to develop during the postglacial transgression as sea-level rise covered the middle Jiangsu coast at ca. 9.0 cal ka BP. These initially submerged tidal sand ridges were constantly migrating until the southward migration of the Yellow River mouth to the northern Jiangsu coast during AD 1128 to 1855. The paleo-Xiyang tidal channel that was determined by the paleo-tidal current field and significantly different from the modern one, was in existence during the Holocene transgressive maxima and lasted until AD 1128. Following the capture of the Huaihe River in AD 1128 by the Yellow River, the paleo-Xiyang tidal channel was infilled with a large amount of river-derived sediments from AD 1128 to 1855, causing the emergence of some of the previously submerged tidal sand ridges. From AD 1855 to the present, the infilled paleo-Xiyang tidal channel has undergone scouring, resulting in its modern form. The modern Xiyang tidal channel continues to widen and deepen, due both to strong tidal current scouring and anthropogenic activities.  相似文献   
379.
Drill cores through modern coral reefs commonly show a time lag in reef initiation followed by a phase of rapid accretion to sea level from submerged foundations – the so-called ‘catch-up response’. But because of the difficulty of drilling in these environments, core distribution is usually restricted to accessible areas that may not fully represent reef history, especially if the reef initiated in patches or developed with a prograde or retrograde geometry. As a consequence, core data have the potential to give a misleading impression of reef development, particularly with respect to the timing of initiation and response to sea-level rise. Here, we use computer models to simulate keep-up reef development and, from them, quantify variations in the timing of reef initiation and accretion rate using mock cores taken through the completed simulations. The results demonstrate that cores consistently underestimate the timing of reef initiation and overestimate the reef accretion rate so that, statistically, a core through a keep-up reef will most likely produce a catch-up pattern – an initiation lag followed by a phase of rapid accretion to sea level. This implies that catch-up signatures may be an artefact of coring and that keep-up reefs are significantly more common than previous core studies claim.  相似文献   
380.
Reinvestigation of Quaternary sediments in West Feliciana Parish, southeastern Louisiana, and adjacent Wilkinson County, southwestern Mississippi, has resulted in revision of previous terrace stratigraphy of this portion of the Gulf Coastal Plain. Plant-macrofossil and pollen assemblages incorporated in fluviatile terrace deposits in the study area are reexamined in light of the current stratigraphic understanding. Macrofossils identified as white spruce (Picea glauca), tamarack (Larix laricina), and northern white cedar (Thuja occidentalis), recovered from these terrace deposits along with fossil remains of distinctly southern plant species, were initially interpreted as the result of dynamic intermixing of aggressive boreal species within a southern forest during the early Wisconsin (Brown, 1938). Failure to distinguish chronologically separate fossiliferous deposits resulted in the conceptual “mixing” of northern and southern plant species which came from two distinct fluviatile terrace sequences. Terrace 2 is now believed to be a fluviatile and coastwise depositional terrace of Sangamon Interglacial age; deposits of terrace 2 contain a distinctly warm-temperate plant assemblage. Fluviatile terrace 1 dates from 12,740 ± 300 to 3457 ± 366 BP and is now considered to be related to late glacial and Holocene aggradation and lateral migration of the Mississippi River (the local base level for streams in the study area); basal portions of terrace 1 contain fossils of white spruce, tamarack, and many plant species today characteristic of the cool-temperate Mixed Mesophytic Forest Association. Terrace 1 fossil deposits occur in fluviatile terraces along tributary streams of the Mississippi River at elevations 15 to 30 m above the maximum recorded historic flood stage of the Mississippi River. The plant macrofossils represent remains of species that grew at or very near the site of deposition; they were not “rafted in” by floodwaters of the Mississippi River. We present quantitative data for plant macrofossils and pollen that support our hypothesis that at least local cooling along the Blufflands of Mississippi and Louisiana promoted southward migrations of mixed mesophytic forest species and certain boreal species along this major pathway during late Wisconsin continental glaciation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号