首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5103篇
  免费   216篇
  国内免费   95篇
测绘学   160篇
大气科学   373篇
地球物理   1289篇
地质学   1890篇
海洋学   460篇
天文学   782篇
综合类   22篇
自然地理   438篇
  2022年   31篇
  2021年   62篇
  2020年   65篇
  2019年   81篇
  2018年   105篇
  2017年   130篇
  2016年   151篇
  2015年   142篇
  2014年   162篇
  2013年   313篇
  2012年   171篇
  2011年   292篇
  2010年   208篇
  2009年   267篇
  2008年   283篇
  2007年   258篇
  2006年   240篇
  2005年   211篇
  2004年   159篇
  2003年   183篇
  2002年   160篇
  2001年   98篇
  2000年   105篇
  1999年   76篇
  1998年   78篇
  1997年   67篇
  1996年   74篇
  1995年   57篇
  1994年   64篇
  1993年   51篇
  1992年   56篇
  1991年   55篇
  1990年   38篇
  1989年   41篇
  1988年   43篇
  1987年   44篇
  1986年   48篇
  1985年   65篇
  1984年   57篇
  1983年   54篇
  1982年   57篇
  1981年   64篇
  1980年   51篇
  1979年   43篇
  1978年   50篇
  1977年   29篇
  1976年   30篇
  1975年   26篇
  1974年   32篇
  1973年   30篇
排序方式: 共有5414条查询结果,搜索用时 15 毫秒
111.
112.
113.
114.
Investigations of atmospheric composition in the Himalayas has been limited in both temporal and spatial scales, mainly due to difficult logistics. Ideal sites for monitoring atmospheric composition and its evolution should be free from local pollution and representative of the remote troposphere (HUEBERT et al., 1980). As the Himalayas are far removed from highly industrialized regions they provide suitable locations to monitor the chemistry of the remote troposphere and to study the evolu…  相似文献   
115.
Ten rare-earth elements (La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb and Lu) and Ta, Th and Hf contents in eight kimberlites and inclusions from Greenland and Zambia have been determined by instrumental neutron activation. All the samples have highly fractionated rare-earth (REE) distribution patterns. La/Yb ratios in the Greenland kimberlites (hypabyssal facies) vary from 111.8 to 188.4, and the total rare-earth contents range from 204.8 to 380.3 ppm. No europium anomaly is present. The Zambian kimberlites (diatreme facies) are altered and carbonated. Rare-earth patterns in these are also light REE-enriched. A significant difference is shown to exist between the diatreme and hypabyssal facies of kimberlites.  相似文献   
116.
Diamonds have been discovered in mantle peridotites and chromitites of six ophiolitic massifs along the 1300 km‐long Yarlung‐Zangbo suture (Bai et al., 1993; Yang et al., 2014; Xu et al., 2015), and in the Dongqiao and Dingqing mantle peridotites of the Bangong‐Nujiang suture in the eastern Tethyan zone (Robinson et al., 2004; Xiong et al., 2018). Recently, in‐situ diamond, coesite and other UHP mineral have also been reported in the Nidar ophiolite of the western Yarlung‐Zangbo suture (Das et al., 2015, 2017). The above‐mentioned diamond‐bearing ophiolites represent remnants of the eastern Mesozoic Tethyan oceanic lithosphere. New publications show that diamonds also occur in chromitites in the Pozanti‐Karsanti ophiolite of Turkey, and in the Mirdita ophiolite of Albania in the western Tethyan zone (Lian et al., 2017; Xiong et al., 2017; Wu et al., 2018). Similar diamonds and associated minerals have also reported from Paleozoic ophiolitic chromitites of Central Asian Orogenic Belt of China and the Ray‐Iz ophiolite in the Polar Urals, Russia (Yang et al., 2015a, b; Tian et al., 2015; Huang et al, 2015). Importantly, in‐situ diamonds have been recovered in chromitites of both the Luobusa ophiolite in Tbet and the Ray‐Iz ophiolite in Russia (Yang et al., 2014, 2015a). The extensive occurrences of such ultra‐high pressure (UHP) minerals in many ophiolites suggest formation by similar geological events in different oceans and orogenic belts of different ages. Compared to diamonds from kimberlites and UHP metamorphic belts, micro‐diamonds from ophiolites present a new occurrence of diamond that requires significantly different physical and chemical conditions of formation in Earth's mantle. The forms of chromite and qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150‐380 km or even deeper in the mantle (Yang et al., 2007; Dobrthinetskaya et al., 2009). The very light C isotope composition (δ13C ‐18 to ‐28‰) of these ophiolitic diamonds and their Mn‐bearing mineral inclusions, as well as coesite and clinopyroxene lamallae in chromite grains all indicate recycling of ancient continental or oceanic crustal materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction (Yang et al., 2014, 2015a; Robinson et al., 2015; Moe et al., 2018). These new observations and new data strongly suggest that micro‐diamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. The in‐situ occurrence of micro‐diamonds has been well‐demonstrated by different groups of international researchers, along with other UHP minerals in podiform chromitites and ophiolitic peridotites clearly indicate their deep mantle origin and effectively address questions of possible contamination during sample processing and analytical work. The widespread occurrence of ophiolite‐hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in‐situ oceanic mantle. The fundamental scientific question to address here is how and where these micro‐diamonds and UHP minerals first crystallized, how they were incorporated into ophiolitic chromitites and peridotites and how they were preserved during transport to the surface. Thus, diamonds and UHP minerals in ophiolites have raised new scientific problems and opened a new window for geologists to study recycling from crust to deep mantle and back to the surface.  相似文献   
117.
利用树轮资料重建青海都兰地区过去1835年的气候变化   总被引:20,自引:6,他引:20  
根据青海都兰地区树木年轮样本,建立了上前我国最长的年轮年表序列(1835a),系 统地与所在地区气候资料进行了综合分析。通过响应函数计算得出,该年表对温度因子的反映更为第三一些。在响应面分析中发现,温度、降水与年轮宽度的关系呈现出随温度和降水的不同而不同。在温度低而降水量少的情况下,其线性相关性明显;但在温度较高和降水量较多时,树轮与两要素间的关系就显得不明显。另外,还对该年表玮秋季平均温度的关系进  相似文献   
118.
The room-temperature Raman spectra of aragonite, magnesite and dolomite have been recorded up to 30 GPa and 25 GPa, respectively and no phase changes were observed during compression, unlike calcite. The effect of temperature on the room-pressure Raman spectra of calcite, aragonite, magnesite and dolomite is reported up to 800–1100 K. The measured relative pressure and temperature-shifts of the Raman lines are greater for the lattice modes than for the internal modes of the CO3 groups. These shifts are used to calculate the mode anharmonic parameters of the observed Raman modes; they are negative and their absolute values are smaller (close to 0) for the internal CO3 modes than for the lattice modes (4–17 10?5 K?1). The temperature shifts of the lattice modes in calcite are considerably larger than those for dolomite and magnesite, and a marked non-linear increase in linewidth is observed above 400° C for calcite. This is consistent with an increasing relaxational component to the libration of the CO3 groups about their threefold axes, premonitory to the rotational order-disorder transition at higher temperature. This behaviour is not observed for the other calcite structured minerals in this study. We examine systematic variations in the lattice mode frequencies and linewidths with composition, to begin to understand these differences in their anharmonic behaviour. Finally, we have used a simple Debye-Waller model to calculate atomic displacements in calcite, magnesite and dolomite with increasing temperature from the vibrational frequency data, to provide a direct comparison with atomic positional data from high-temperature structure refinements.  相似文献   
119.
The reliability of phytolith assemblage analysis for characterizing Mediterranean vegetation is investigated in this study. Phytolith assemblages are extracted from modern and buried Holocene soils from the middle Rhône valley (France). The relation between modern phytolith assemblages and the surrounding vegetation, as well as between fossil assemblages and contemporaneous vegetation, already reconstructed through other proxies, is discussed. We demonstrate that the main northwestern Mediterranean biomes are well distinguished by soil phytolith assemblage analysis. In particular, the density of pine and nonconiferous trees (densities expressed relatively to the grass cover) and the overall degree of opening of the vegetation appear well recorded by three phytolith indexes. North Mediterranean vegetation changes during the Holocene period, mainly tree line shifts, pine wood development and deforestation are poorly documented, due to the scarcity of proxy-preserving sites. Phytolith assemblage analysis of soils, buried soils, and sediments appears to be a promising technique to fill this gap.  相似文献   
120.
Many chromite-rich rocks contain relatively high concentrations of the platinum-group elements (PGE). In many cases, the phases carrying PGE occur as either platinum-group minerals (PGM) or as base metal sulfides in solid solution in sulfides. In some cases, such as the UG-2 unit of the Bushveld Complex, the PGM are occluded inside chromite grains. Chromites are notably difficult to dissolve in most fluxes and if the chromite contains some PGM the possibility exists that not all the PGE will be recovered during fusion. In this work, shortcomings in published methods of analysis based on the nickel sulfide fire assay procedure were investigated and a new procedure developed based on the addition of sodium metaphosphate to the fusion mixture. Optimum composition of the fusion mixture was found to be 10 g sodium metaphosphate and 9 g silica to 10 g sample, 15 g sodium carbonate, 30 g lithium tetraborate, 7.5 g nickel and 4.5 g sulfur to achieve complete dissolution of chromite grains. The new flux mixture was evaluated by the analysis of reference material CHR-Pt+ (which is known to contain PGM inside chromite grains) and no undissolved chromite grains were found in the glassy slag. Analysis of the nickel sulfide beads from this fire assay using neutron activation analysis showed similar results for Rh and Ru when compared with published conventional true (or accepted) values, while Au, Ir, Os, Pd and Pt values determined here were 10 to 30% higher than the corresponding published conventional true values. It was concluded that the addition of sodium metaphosphate improved chromite dissolution in the flux and appears to improve PGE recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号