首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
地球物理   3篇
地质学   35篇
海洋学   1篇
  2024年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有39条查询结果,搜索用时 62 毫秒
11.
Ductile shear zones are important in tectonic reconstructions as a source of information on the relative motion of large crustal blocks or plates in the geological past. Methods to interpret fabric in ductile shear zones were mostly developed for low grade rocks where overprinting relations are usually well preserved. However, high grade shear zones are common and dominate in many Precambrian terrains. High grade shear zones should be analysed in a different way from low grade zones. The plane on which shear sense markers should be observed, the vorticity profile plane, is more difficult to find than in low grade shear zones. The most reliable shear sense markers in high grade shear zones are shear bands, mineral fish, mantled porphyroclasts, sigmoids and asymmetric boudins.  相似文献   
12.
13.
A field example of strain partitioning has been analysed along the Nurra–Asinara transect of the NW Sardinian Variscan chain (Italy). The section in the Nurra–Asinara area is in a continuous sequence of tectono-metamorphic complexes made of low- to high-grade metamorphic rocks affected by a polyphase tectonic history. The principal fabric of the area is controlled by a D2 progressive deformation phase in which the strain is partitioned into folds and shear zone domains. The D2 stretching lineation and shear sense show a clear change from south to north. The principal meso- and micro-structures, vorticity gauges and a quantitative kinematic analysis of local strain suggest that the D2 kinematic history could be envisaged as an oblique heterogeneous deformation similar to the transpressive systems described in ancient and modern settings elsewhere. Using a simple kinematic model we also propose that both a transpressive system followed by “thrusting” or a partitioned transpressive system could be responsible for the fabric distribution and strain accumulation described in the study transect.  相似文献   
14.
The Lower Ugab and Goantagab structural domains are located at the junction between the N–S trending Kaoko and the E–W trending Damara belts (NW Namibia), where Neoproterozoic metavolcano-sedimentary sequences were intruded by several syenitic/granitic plutons. We present here new U–Pb ages on zircon grains from the Voetspoor and Doros plutons. Together with petrological, geochemical and structural data we evaluate the timing of the deformation and relation to the geodynamics during the final stage of Gondwana amalgamation.The plutons are composed of three main rock types: hornblende quartz-syenite, syenodiorite and biotite granite. The two former are predominant and show genetic correlation such as magma mingling structures and similar geochemical signatures. The biotite granite occurs in the SW parts of the intrusions and clearly cuts the syenitic rocks. Although the plutons are mainly isotropic, the structures around them demonstrate that their intrusion occurred during a second deformation phase (D2) with a component of sinistral solid state rotation with respect to the wall rocks in response to D2 transpression. Four samples were dated using U–Pb SHRIMP methodology in single zircon grains. A hornblende monzodiorite from the Voetspoor pluton yielded an age of 534 ± 4.5 Ma. A hornblende monzonite from the Doros pluton produced an age of 528 ± 5 Ma. The biotite granite facies was sampled in the Doros intrusion and yielded an age of 530 ± 4.5 Ma. In addition, a granitic vein folded by D2 close to the northeastern contact of the Doros pluton with the encasing phyllites (Amis River Formation) was also dated, yielding an age of 533 ± 6 Ma. The data show that all granite–syenite from Doros and Voetspoor intrusions are contemporaneous and crystallized in the period between 539 and 522 Ma within the errors. D1–D2 deformational phases took place under greenschist facies (biotite zone) conditions and during D3 the metamorphic grade was slightly lower. We interpret that the plutons are coeval to peak metamorphism of the region (530–520 Ma) and that D2 and D3 sinistral transpressional phases are due to collision in the Damara Belt. The E–W compressional event and second metamorphic episode in the Kaoko Belt occurred between 580 and 560 Ma and are apparently unrelated to the thermo-tectonic evolution described here, although D1 might be partially related to this event. The sinistral transpressional D2 phase resulted probably from the position of the area considered at the junction between the belts, and not in the frontal Damara collision further to the east. This new interpretation is consistent with the Ar–Ar ages for the region (about 500 Ma), interpreted to reflect cooling of the orogen. The enrichment in LREE, K, Rb, Ba and Sr, and depletion in Nb of these basic to intermediate alkalic rocks could indicate that they partially derived from melting of a subcontinental lithospheric mantle that was affected by subduction and the granitic rock types represent lower crust contamination. We interpret that they could be related to heating in the mantle caused by asthenosphere influx in a zone of slab-breakoff during collision between Kalahari and Congo cratons.  相似文献   
15.
A new U?CPb SHRIMP age of 551?±?4?Ma on a mylonitic porphyry that intruded into the Sierra Ballena Shear Zone (Southernmost Dom Feliciano Belt, Uruguay) and a review of relevant published data make possible a more refined correlation and reconstruction of Brasiliano/Pan-African transpressional events. Paleogeographic reconstruction, kinematics and timing of events indicate a connection between the shear systems of the Dom Feliciano and Kaoko Belts at 580?C550?Ma. Sinistral transpression recorded in shear zones accommodates deformation subsequent to collision between the Congo and Río de la Plata Cratons. The correlation is strengthened by the similarity of magmatic and metamorphic ages in the Coastal Terrane of the Kaoko Belt and the Punta del Este Terrane of the Dom Feliciano Belt. This post-collisional sinistral transpression brought these units near to their final position in Gondwana and explains the different evolution at 550?C530?Ma. While in the Kaoko Belt, an extensional episode resulted in exhumation as a consequence of collision in the Damara Belt, in the Dom Feliciano Belt, sinistral transpression occurred associated with the closure of the southern Adamastor Ocean due to Kalahari-Río de la Plata collision.  相似文献   
16.
17.
18.
A series of regional deformation phases is described for the metamorphic basement and the Permian cover in an area in the central Orobic Alps, northern Italy. In the basement deformation under low-grade amphibolite metamorphic conditions is followed by a second phase during retrograde greenschist conditions. These two phases predate the deposition of the Permian cover and are of probable Variscan age. An extensional basin formed on the eroded basement during the Late Carboniferous, filled with fan conglomerates and sandstones, and rhyolitic volcanic rocks. Well-preserved brittle extensional faults bound these basins. Further extension deformed basement and cover before the onset of Alpine compressional tectonics. Cover and basement were deformed together during two phases of compressional deformation of post-Triassic age, the first giving rise to tectonic inversion of the older extensional faults, the second to new thrust faults, both associated with south-directed nappe emplacement and regional folding. Foliations develop in the cover only during the first phase of deformation as part of the activity on “shortening faults”. Main activity on the Orobic thrust actually postdates the first phase of thrusting and foliation development in the cover.  相似文献   
19.
The geometry of ductile shear zones can be used to solve problems of regional tectonics if the deformation path of material in the zones is sufficiently understood. Flow in many shear zones may have deviated from simple shear and consequently data on the final deformation state such as finite strain and volume change are insufficient for reconstruction of the deformation path, even if flow parameters were constant during progressive deformation. Additional information on the flow vorticity number is also needed and can be obtained from fabric elements such as sets of folded-boudinaged veins, rotated porphyroblasts and blocked rigid objects. Mohr circle constructions are presented as a tool to calculate deformation parameters from fabric data, to represent the deformation path graphically and to reconstruct flow parameters from the shape of this path. If the vorticity number or the volume change rate changed during progressive deformation, the deformation path can be partly reconstructed using sets of fabric elements which register mean and final values of these parameters.
Zusammenfassung Die Geometrie duktiler Scherzonen kann dazu verwendet werden, regionaltektonische Probleme zu lösen, sofern der im Material abgebildete Deformationsweg dieser Zonen genügend verstanden wird. Der Flow in vielen Scherzonen mag sich aus einfacher Scherung ableiten lassen, daher genügen Daten über den letzten Deformationszustand wie z. B. der finite Strain und die Volumenänderung nicht für die Rekonstruktion des Deformationsweges, auch nicht bei konstanten Fließparametern während der fortschreitenden Deformation. Zusätzliche Daten über die Verwirbelungszahl (Rotationszahl) sind nötig. Sie lassen sich ableiten aus verschiedenartigen Gefügeelementen wie Gruppen gefaltetboundinierter Gänge, rotierten Porphyroblasten und »verklemmten«, starren Objekten. Vorgestellt werden anhand von Gefügedaten Konstruktionen am Mohr'schen Spannungskreis zur Bestimmung der Deformationsparameter, um damit den Deformationsweg graphisch darzustellen und daraus die Fließparameter abzuleiten. Änderungen in der Rotationszahl (Vorticity) oder der Geschwindigkeit in der Volumenänderung während progressiver Deformation erlauben den Deformationsweg zumindest teilweise zu rekonstruieren. Verwendung finden hierbei diejenigen Gefügeelemente, die sowohl die durchschnittliche Deformation als auch die letzten Deformationsereignisse registriert haben.

Résumé La géométrie des shear zones ductiles peut être utilisée pour résoudre des problèmes de tectonique régionale, pour autant que l'histoire de la déformation des matériaux de ces zones soit suffisamment bien comprise. Il peut arriver, dans beaucoup de shear zones, que le processus ductile se soit écarté du modèle du glissement simple et qu'en conséquence, les caractères finals de la déformation, tels que l'ellipsoïde de la déformation finie, ou le changement de volume, s'avèrent insuffisants pour pouvoir reconstruire l'histoire de la déformation et ce, même si les paramètres de fluage sont restés constants au cours du processus. Il est alors nécessaire de disposer d'informations supplémentaires quant à la vorticité; ces informations peuvent être fournies par certains éléments structuraux tels que des groupes de veines plissées-boudinées, des porphyroblastes qui ont toruné et des objets rigides bloqués. Au moyen de constructions appliquées au cercle de Mohr, il est possible de calculer les paramètres de la déformation à partir des données structurales, de représenter graphiquement l'histoire de la déformation et de retrouver les paramètres de fluage à partir de la forme de cette représentation. Si, au cours de la déformation progressive, la vorticité ou le taux de variation de volume se modifient, l'histoire de la déformation peut être reconstituée partiellement par l'utilisation de groupes d'éléments structuraux qui enregistrent les valeurs moyenne et finale de ces paramètres.

, . , , . , , . , , .: , «» . , . , , , . , , , .
  相似文献   
20.
Many problems in geology, especially structural geology, can only be solved by detailed mapping. Presently, mapping is still mainly carried out on paper using techniques from the 19th Century. However, tools are now available to carry out most mapping tasks on microcomputers in the field without any need of paper. This speeds up geological mapping and reduces the errors involved in the mapping process. Digital mapping also allows work in featureless areas and areas of great structural complexity that would not be possible using paper maps. We present two practical examples of the new technology of digital mapping using microcomputers, from Namibia and Greece.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号