首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   10篇
  国内免费   1篇
测绘学   6篇
大气科学   34篇
地球物理   50篇
地质学   53篇
海洋学   17篇
天文学   39篇
自然地理   10篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   12篇
  2015年   15篇
  2014年   7篇
  2013年   16篇
  2012年   8篇
  2011年   13篇
  2010年   13篇
  2009年   13篇
  2008年   14篇
  2007年   5篇
  2006年   11篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1999年   10篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1989年   1篇
  1984年   1篇
  1979年   2篇
  1973年   1篇
  1972年   1篇
  1954年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
71.
The thermal reactivity of organic matter in source rocks is usually kinetically represented by a set of parallel and independent first order reactions. The approach assumes that only defunctionalisation reactions take place upon thermal decomposition, regardless of the chemical nature of kerogen. We have developed a new method for evaluating maturation pathways for an important kerogen-forming geopolymer, algaenan from the alga Botryococcus braunii (B. braunii), involving molecular dynamic reactive modelling based on quantum mechanics to reproduce maturation. To achieve this, a structural model is first constructed on the basis of models from the literature and analytical characterization of our samples using modern 1D and 2D nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR) and elemental analysis (EA). Then, thermal decomposition of the algaenan is performed at low conversion in order to describe the initial transformations analytically. In an additional step, the observed chemical changes are quantitatively and qualitatively compared to simulated maturation from the molecular models. From this simulated maturation detailed reaction schemes are extracted for primary cracking mechanisms.  相似文献   
72.
Most current coral reef management is supported by mapping and monitoring limited in record length and spatial extent. These deficiencies were addressed in a multidisciplinary study of cyclone impacts on Aboré Reef, New-Caledonia. Local knowledge, high thematic-resolution maps, and time-series satellite imagery complemented classical in situ monitoring methods. Field survey stations were selected from examination of pre- and post-cyclone images and their post-cyclone coral communities documented in terms of substrata, coral morphologies, live coral cover, and taxonomy. Time-series maps of hierarchically defined coral communities created at spatial scales documenting the variability among communities (29-45 classes) and suggesting the processes that affected them. The increased spatial coverage and repeatability of this approach significantly improved the recognition and interpretation of coral communities’ spatio-temporal variability. It identified precise locations of impacted areas and those exhibiting coral recovery and resilience. The approach provides a comprehensive suite of information on which to base reef-scale conservation actions.  相似文献   
73.
The entropy budget is calculated of the coupled atmosphere–ocean general circulation model HadCM3. Estimates of the different entropy sources and sinks of the climate system are obtained directly from the diabatic heating terms, and an approximate estimate of the planetary entropy production is also provided. The rate of material entropy production of the climate system is found to be ~50 mW m?2 K?1, a value intermediate in the range 30–70 mW m?2 K?1 previously reported from different models. The largest part of this is due to sensible and latent heat transport (~38 mW m?2 K?1). Another 13 mW m?2 K?1 is due to dissipation of kinetic energy in the atmosphere by friction and Reynolds stresses. Numerical entropy production in the atmosphere dynamical core is found to be about 0.7 mW m?2 K?1. The material entropy production within the ocean due to turbulent mixing is ~1 mW m?2 K?1, a very small contribution to the material entropy production of the climate system. The rate of change of entropy of the model climate system is about 1 mW m?2 K?1 or less, which is comparable with the typical size of the fluctuations of the entropy sources due to interannual variability, and a more accurate closure of the budget than achieved by previous analyses. Results are similar for FAMOUS, which has a lower spatial resolution but similar formulation to HadCM3, while more substantial differences are found with respect to other models, suggesting that the formulation of the model has an important influence on the climate entropy budget. Since this is the first diagnosis of the entropy budget in a climate model of the type and complexity used for projection of twenty-first century climate change, it would be valuable if similar analyses were carried out for other such models.  相似文献   
74.
We present here the first available estimations of chemical weathering and associated atmospheric CO2 consumption rates as well as mechanical erosion rate for the Lesser Antilles. The chemical weathering (100–120 t/km2/year) and CO2 consumption (1.1–1.4 × 106 mol/km2/year) rates are calculated after subtraction of the atmospheric and hydrothermal inputs in the chemical composition of the river dissolved loads. These rates thus reflect only the low-temperature basalt weathering. Mechanical erosion rates (approx. 800–4000 t/km2/year) are estimated by a geochemical mass balance between the dissolved and solid loads and mean unaltered rock. The calculated chemical weathering rates and associated atmospheric CO2 consumption rates are among the highest values worldwide but are still lower than those of other tropical volcanic islands and do not fit with the HCO3 concentration vs. 1/T correlation proposed by Dessert et al. (2001). The thick soils and explosive volcanism context of the Lesser Antilles are the two possible keys to this different weathering behaviour; the development of thick soils limits the chemical weathering and the presence of very porous pyroclastic flows allows an important water infiltration and thus subsurface weathering mechanisms, which are less effective for atmospheric CO2 consumption.  相似文献   
75.
Impacts to shallow-water estuarine habitats should be assessed in a holistic context reflecting both the interrelatedness of habitats that characterize these environments and the history of impacts, human and natural, that have shaped their present ecology. In a holistic context these habitats are considered to be dynamic associations of macrohabitats and micro-habitats, interacting through time to affect the quantity (Q1), quality (Q2), and timing (T) of material and energy transfer within the system. Where data are available, this holistic approach (Q1, Q2 and T or Q2T) allows impacts to be evaluated in a multidimensional framework of time and space. Unfortunately, few data are available to evaluate the long-term implications of timing, the T factor. Recorded observations of most estuarine systems cover tens of years, periods not extensive enough to assess long-term changes to the environment or to distinguish man's impacts from those of nature. Sustained droughts, for example, can cause massive disruption in estuaries, altering habitats and species composition. When these changes occur over periods of 5–10 yr, the changes are difficult to identify and may be attributed to man's activities rather than nature's Using the Hudson River estuary as an example, we have knowledge of historical impacts extending back to the 1700s, ranging from dredging to major droughts. For the Hudson River, recorded observations of rainfall and river flow extend back about 70 yr; however, tree rings provide a more extensive record since tree growth increments are directly dependent upon rainfall. The Hudson River drought record was extended back to 1694 using tree rings. Using the reconstructed record, the relationship between today's conditions—flow and average location of the ocean-derived salt front—can be placed in a historical context. This historical perspective allows us to place present-day human impacts into the contex of long-term natural impacts and to discriminate among these effects. The drought example is particularly relevant to shallow-water habitats because these habitats provide an interface between fresh and marine waters. *** DIRECT SUPPORT *** A01BY074 00008  相似文献   
76.
Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 μg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers.  相似文献   
77.
Titanium concentrations have been derived from measurements with the lunar-orbiting gamma-ray experiment on Apollo 15 and 16 by analyzing a spectral interval in which the titanium signal is relatively enhanced. Landing site soil values provide the reference for a regression curve from which Ti concentrations in 137 regions of adequate counting statistics are calculated. Among the mare regions overflown, the southern portion of Mare Tranquillitatis contains the highest Ti concentration (4.4%), Mare Serenitatis, Mare Fecunditatis, and Mare Smythii have intermediate values corresponding to low-Ti basalts, and Mare Crisium is conspicuously low in Ti (0.9%). Regional values in the western maria range from 1.1% to 4.1%, somewhat higher in the north than in the south, with the highest values seen south and west of Aristarchus. The Aristarchus Plateau appears chemically distinct from the surrounding mare. The younger western basalts mapped by the experiment do not appear to be identical to the Apollo 11 and Apollo 17 high-Ti basalts. Low-Ti basalts predominate in the observed mare regions. Highland Ti concentrations range from undetectable to 1.5% with several exceptions; accuracy is limited by the relatively large uncertainty. Highland results suggest a north-south asymmetry which is not consistent with previously reported results for Fe and Th. Comparisons with telescopic spectral reflectance studies of the maria do not show complete agreement and suggest that effects due to Fe may not have been fully removed from the reflectance data.  相似文献   
78.
Thermochronological analysis of detrital sediments derived from the erosion of mountain belts and contained in the sedimentary basins surrounding them allows reconstructing the long-term exhumation history of the sediment source areas. The effective closure temperature of the thermochronological system analysed determines the spatial and temporal resolution of the analysis through the duration of the lag time between closure of the system during exhumation and its deposition in the sedimentary basin. Here, we report apatite fission-track (AFT) data from 31 detrital samples collected from Miocene to Pliocene stratigraphic sections of the Siwalik Group in western and central Nepal, as well as three samples from modern river sediments from the same area, that complement detrital zircon fission-track (ZFT) and U–Pb data from the same samples presented in a companion paper. Samples from the upper part of the stratigraphic sections are unreset and retain a signal of source-area exhumation; they show spatial variations in source-area exhumation rates that are not picked up by the higher-temperature systems. More deeply buried samples have been partially reset within the Siwalik basin and provide constraints on the thermal and kinematic history of the fold-and-thrust belt itself. The results suggest that peak source-area exhumation rates have been constant at ∼1.8 km Myr−1 over the last ∼7 Ma in central Nepal, whereas they ranged between 1 and ∼1.5 km Myr−1 in western Nepal over the same time interval; these spatial variations may be explained by either a tectonic or climatic control on exhumation rates, or possibly a combination of the two. Increasing lag times within the uppermost part of the sections suggest an increasing component of apatites that have been recycled within the Siwalik belt and are corroborated by AFT ages of modern river sediment downstream as well as the record of the distal Bengal Fan. The most deeply buried and most strongly annealed samples record onset of exhumation of the frontal Siwaliks along the Himalayan frontal thrust at ∼2 Ma and continuous shortening at rates comparable with the present-day shortening rates from at least 0.3 Ma onward.  相似文献   
79.
Large-scale flood modelling approaches designed for regional to continental scales usually rely on relatively simple assumptions to represent the potentially highly complex river bathymetry at the watershed scale based on digital elevation models (DEMs) with a resolution in the range of 25–30 m. Here, high-resolution (1 m) LiDAR DEMs are employed to present a novel large-scale methodology using a more realistic estimation of bathymetry based on hydrogeomorphological GIS tools to extract water surface slope. The large-scale 1D/2D flood model LISFLOOD-FP is applied to validate the simulated flood levels using detailed water level data in four different watersheds in Quebec (Canada), including continuous profiles over extensive distances measured with the HydroBall technology. A GIS-automated procedure allows to obtain the average width required to run LISFLOOD-FP. The GIS-automated procedure to estimate bathymetry from LiDAR water surface data uses a hydraulic inverse problem based on discharge at the time of acquisition of LiDAR data. A tiling approach, allowing several small independent hydraulic simulations to cover an entire watershed, greatly improves processing time to simulate large watersheds with a 10-m resampled LiDAR DEM. Results show significant improvements to large-scale flood modelling at the watershed scale with standard deviation in the range of 0.30 m and an average fit of around 90%. The main advantage of the proposed approach is to avoid the need to collect expensive bathymetry data to efficiently and accurately simulate flood levels over extensive areas.  相似文献   
80.
We have conducted four numerical experiments with an atmospheric general circulation model (AGCM) to investigate the sensitivity of Asian and African monsoons to small changes (–5 to +12%), with respect to present-day, in incoming solar radiation at the top of the atmosphere. We show that, during the mid-Holocene (6 kBP where kBP means thousands of years before present-day) and the last interglacial (126 kBP), the Northern Hemisphere seasonal contrast was increased, with warmer summers and colder winters. At the time of glacial inception (115 kBP) however, summers were cooler and winters milder. As a consequence, Asia and tropical North Africa experienced stronger (weaker) summer monsoons 6 and 126 kBP (115 kBP), in agreement with previous numerical studies. This present study shows that summer warming/cooling of Eurasia and North Africa induced a shift of the main low-level convergence cell along a northwest/southeast transect. When land was warmer (during the summer months 6 and 126 kBP), the monsoon winds converged further inland bringing more moisture into northern India, western China and the southern Sahara. The southern tips of India, Indochina and southeastern China, as well as equatorial North Africa became drier. When land was cooler (during the summer 115 kBP), the main convergence zone was located over the west Pacific and the wet (dry) areas were those that were dry (wet) 6 and 126 kBP. The location and intensity of the simulated precipitation maxima were therefore very sensitive to changes in insolation. However the total amount of monsoon rain in Asia as well as in Africa remained remarkably stable through the time periods studied. These simulated migrations of convective activities were accompanied by changes in the nature of precipitation events: increased monsoon rains in these experiments were always associated with more high precipitation events (> 5 mm day –1), and fewer light showers (1 mm day). Rainy days with rates between 1 and 5 mm day–1 were almost unchanged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号