首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   24篇
  国内免费   8篇
测绘学   35篇
大气科学   43篇
地球物理   78篇
地质学   166篇
海洋学   43篇
天文学   69篇
综合类   1篇
自然地理   35篇
  2023年   3篇
  2022年   4篇
  2021年   8篇
  2020年   6篇
  2019年   10篇
  2018年   10篇
  2017年   6篇
  2016年   24篇
  2015年   16篇
  2014年   14篇
  2013年   24篇
  2012年   24篇
  2011年   31篇
  2010年   29篇
  2009年   36篇
  2008年   15篇
  2007年   20篇
  2006年   18篇
  2005年   21篇
  2004年   15篇
  2003年   9篇
  2002年   11篇
  2001年   12篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   7篇
  1994年   8篇
  1993年   10篇
  1992年   6篇
  1991年   8篇
  1990年   4篇
  1989年   3篇
  1988年   6篇
  1987年   1篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
排序方式: 共有470条查询结果,搜索用时 62 毫秒
111.
In New Caledonia wildfires and invasive mammals (deer and wild pigs) constitute the major agents of land surface degradation. Our study reveals the linkage between land cover and water balance on the northeast coast of New Caledonia (2400 mm annual rainfall) located on a micaschist basement. The hydrological regime of characteristic and representative land surfaces is assessed using a 1-year record from three 100 m2 plots each, located in a forest area degraded by an invasive fauna, in a woody savannah which is regularly burned, and in a healthy forest area. The three plots present highly contrasting hydrological regimes, with annual and maximum runoff/rain ratios during a rain event of, respectively, 0.82, 0.16, 0.03, and 2.7, 0.7, 0.2, for the degraded forest, the savannah and the healthy forest. Such results suggest that subsurface flow originating from the contributing area above the degraded forest plot should exfiltrate inside the plot. A conceptual model for the degraded forest plot shows that water exfiltrating inside the plot represents 61% of the observed runoff. In savannahs, water should mainly be transferred downstream by subsurface flow within a thick organic soil layer limited by an impervious clay layer at a 20–30 cm depth. Savannahs are generally located above forests and generate the transfer of rainwater to downslope forests. Exfiltration into the forests can be the result of this transfer and depends on the thickness and permeability of the forest topsoils and on topographic gradients. Water exfiltration in forest areas highly degraded by pigs and deer enhances erosion and increases further degradation. It probably also limits percolation in the areas located downstream by increasing the amount of superficial runoff concentrated in gullies.  相似文献   
112.
Management of water, regionally, nationally and globally will continue to be a priority and complex undertaking. In riverine systems, biotic components like flora and fauna play critical roles in filtering water so it is available for human use and consumption. Preservation of ecosystems and associated ecosystem functions is therefore vital. In highly regulated large river basins, natural ecosystems are often supported through provision of environmental flows. Flow delivery, however, should be underpinned by rigorous monitoring to identify and prioritise biotic water requirements. Currently, large-scale monitoring solutions are scaled from remote sensing data via measurement of field evapotranspiration for woody tree vegetation species. However, as there is generally a mismatch between field data collection area and remote sensing pixel size, new methods are required to proportion tree evapotranspiration based on tree fractional canopy area per pixel. We present a novel method to derive tree fractional canopy cover (FTCC) at 20 m resolution in semi-arid and arid floodplain areas. The method employs LiDAR as a canopy area field measurement proxy (10 m resolution). We used Sentinel-1 and Sentinel-2 (radar and multispectral imagery) in a Random Forest analysis, undertaken to develop a predictive FTCC model trained using LiDAR for two regions in the Murray–Darling Basin. A predictor model combining the results of both regions was able to explain between 71%–85% of FTCC variation when compared to LiDAR FTCC when output in 10% increments. Development of this method underpins the advancement of woody vegetation monitoring to inform environmental flow management in the Murray–Darling Basin. The method and fine scale outputs will also be of value to other catchment management concerns such as altered catchment water yields related to bushfires and as such has application to water management worldwide.  相似文献   
113.
Deltas are at the transition between fluvial and marine sedimentary environments where sediment density flows are often triggered during high river discharge events, forming submarine channels and sediment waves. On wave-influenced deltas, longshore currents are particularly efficient at transporting sediment alongshore, reducing the likelihood of sediment density flows from occurring at river mouths. This study describes four deltaic sedimentary systems at different stages of their evolution on a formerly glaciated continental inner shelf of eastern Canada in order to better understand the distribution of sediment density flows on wave-influenced deltas. Three types of settings are recognized as being prone to sediment density flows: (i) in the early stages of wave-influence and on large deltas, converging longshore currents can lead to offshelf sediment transport; (ii) on wave-influenced to wave-dominated deltas, a sandy spit can re-route the river mouth and sediment density flows form where the spit intersects the delta lip; (iii) in advanced stages of wave-dominated deltas and during their demise, rocky headlands are exposed and can intersect the slope, where off-shelf sediment transport occurs. These types of sediment density flows were all characterized by debris flows or surge-type turbidity currents which have limited offshore run-out. More rarely, hyperpycnal flows form at the river mouths, especially where the river incises glaciomarine clays prone to landsliding in the river, which increases fine-grained fluvial suspended sediment concentration. Overall, these results highlight the predominance of fluvial-dominated deltas during a phase of relative sea-level fall combined with high sediment supply. However, as soon as sediment supply diminishes, wave action remobilizes sediment alongshore modifying the distribution and types of sediment density flows occurring on wave-influenced deltas.  相似文献   
114.
115.
The first objects to arise in a cold dark matter (CDM) universe present a daunting challenge for models of structure formation. In the ultra small-scale limit, CDM structures form nearly simultaneously across a wide range of scales. Hierarchical clustering no longer provides a guiding principle for theoretical analyses and the computation time required to carry out credible simulations becomes prohibitively high. To gain insight into this problem, we perform high-resolution  ( N = 7203–15843)  simulations of an Einstein–de Sitter cosmology where the initial power spectrum is   P ( k ) ∝ k n ,  with  −2.5 ≤ n ≤− 1  . Self-similar scaling is established for   n =−1  and −2 more convincingly than in previous, lower resolution simulations and for the first time, self-similar scaling is established for an   n =−2.25  simulation. However, finite box-size effects induce departures from self-similar scaling in our   n =−2.5  simulation. We compare our results with the predictions for the power spectrum from (one-loop) perturbation theory and demonstrate that the renormalization group approach suggested by McDonald improves perturbation theory's ability to predict the power spectrum in the quasi-linear regime. In the non-linear regime, our power spectra differ significantly from the widely used fitting formulae of Peacock & Dodds and Smith et al. and a new fitting formula is presented. Implications of our results for the stable clustering hypothesis versus halo model debate are discussed. Our power spectra are inconsistent with predictions of the stable clustering hypothesis in the high- k limit and lend credence to the halo model. Nevertheless, the fitting formula advocated in this paper is purely empirical and not derived from a specific formulation of the halo model.  相似文献   
116.
Bioturbation refers to the mixing of sediment particles resulting from benthic faunal activity. It is the dominant particle mixing process in most marine sediments and exerts an important control on diagenetic processes. In models, bioturbation is usually treated as a diffusive process where the biodiffusion coefficient (Db) characterizes the biological mixing intensity. Biodiffusion coefficients are classically computed by fitting a diffusive model to vertical profiles of particle-bound radioisotopes. One peculiar observation is tracer-dependence: Db values from short-lived tracers tend to be larger than those obtained from long-lived tracers from the same site. Recent theoretical work, based on random walk theory and Lattice Automaton Bioturbation Simulations (LABS), has suggested that this tracer-dependence is simply a model artifact and has concluded that the biodiffusion model is not applicable to the short observational time scales associated with short-lived radioisotopes. Here we have compiled a global dataset of Db values obtained from different radiotracers to assess tracer-dependence from a data perspective. Tracer-dependence is significant in low-mixing environments like slope and deep-sea sediments, but is not present in intensely mixed coastal areas. Tracer-dependence is absent when the number of mixing events is larger than 20, or the potential length scale is greater than 0.5 cm. Roughly this comes down to tracer-derived Db values greater than 2 cm2 yr−1. This condition is met for 68%, 50%, and 8% of published Db values obtained from coastal, continental slope, and abyssal environments, respectively. These results show that short-lived radioisotopes are suitable to quantify biodiffusion mixing in sedimentary environments featuring intense bioturbation.  相似文献   
117.
With the prospect of humans returning to Moon by the end of the next decade, considerable attention is being paid to technologies required to transport astronauts to the lunar surface and then to be able to carry out surface science. Recent and ongoing initiatives have focused on scientific questions to be asked. In contrast, few studies have addressed how these scientific priorities will be achieved. In this contribution, we provide some of the lessons learned from the exploration of the Haughton impact structure, an ideal lunar analogue site in the Canadian Arctic. Essentially, by studying how geologists carry out field science, we can provide guidelines for lunar surface operations. Our goal in this contribution is to inform the engineers and managers involved in mission planning, rather than the field geology community. Our results show that the exploration of the Haughton impact structure can be broken down into 3 distinct phases: (1) reconnaissance; (2) systematic regional-scale mapping and sampling; and (3) detailed local-scale mapping and sampling. This break down is similar to the classic scientific method practiced by field geologists of regional exploratory mapping followed by directed mapping at a local scale, except that we distinguish between two different phases of exploratory mapping. Our data show that the number of stops versus the number of samples collected versus the amount of data collected varied depending on the mission phase, as does the total distance covered per EVA. Thus, operational scenarios could take these differences into account, depending on the goals and duration of the mission. Important lessons learned include the need for flexibility in mission planning in order to account for serendipitous discoveries, the highlighting of key “science supersites” that may require return visits, the need for a rugged but simple human-operated rover, laboratory space in the habitat, and adequate room for returned samples, both in the habitat and in the return vehicle. The proposed set of recommendations ideally should be tried and tested in future analogue missions at terrestrial impact sites prior to planetary missions.  相似文献   
118.
For good management of groundwater resources, and to comply with European and national regulations, a detailed understanding of an aquifer’s hydraulic setting is required. In order to better characterize a sandy aquifer that is affected by diffuse pollution (Brévilles spring catchment, Val d’Oise, France), and to quantify the transfer time in the saturated zone, a multi-tracer test involving a new technique, the ‘finite volume point dilution method’, has been performed in natural flow conditions. In November 2005, injections of four different tracers took place in four piezometers involving different locations and depths in the aquifer. Recovery of the tracers was observed at two different places near the aquifer outlet. A particularly long and unusual monitoring exercise (27 months) demonstrated the existence of several different velocities within the sandy layer, which seems to be linked to the decrease of hydraulic conductivity with depth. The new insight and parameter quantification brought by interpretation of these tests contribute to a better characterization of the saturated zone. The particularly long-term monitoring exercise also gives new information to understand and forecast the trend and persistence of groundwater contamination by pesticides in the catchment.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号