首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   24篇
  国内免费   8篇
测绘学   35篇
大气科学   47篇
地球物理   83篇
地质学   169篇
海洋学   49篇
天文学   76篇
综合类   1篇
自然地理   37篇
  2023年   3篇
  2022年   4篇
  2021年   8篇
  2020年   7篇
  2019年   10篇
  2018年   10篇
  2017年   6篇
  2016年   24篇
  2015年   17篇
  2014年   15篇
  2013年   25篇
  2012年   27篇
  2011年   33篇
  2010年   29篇
  2009年   39篇
  2008年   16篇
  2007年   23篇
  2006年   18篇
  2005年   21篇
  2004年   15篇
  2003年   10篇
  2002年   11篇
  2001年   12篇
  2000年   5篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   6篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   7篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
排序方式: 共有497条查询结果,搜索用时 140 毫秒
61.
62.
63.
The impact of diurnal SST coupling and vertical oceanic resolution on the simulation of the Indian Summer Monsoon (ISM) and its relationships with El Ni?o-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events are studied through the analysis of four integrations of a high resolution Coupled General Circulation Model (CGCM), but with different configurations. The only differences between the four integrations are the frequency of coupling between the ocean and atmosphere for the Sea Surface Temperature (SST) parameter (2 vs. 24?h coupling) and/or the vertical oceanic resolution (31 vs. 301 levels) in the CGCM. Although the summer mean tropical climate is reasonably well captured with all the configurations of the CGCM and is not significantly modified by changing the frequency of SST coupling from once to twelve per day, the ISM–ENSO teleconnections are rather poorly simulated in the two simulations in which SST is exchanged only once per day, independently of the vertical oceanic resolution used in the CGCM. Surprisingly, when 2?h SST coupling is implemented in the CGCM, the ISM–ENSO teleconnection is better simulated, particularly, the complex lead-lag relationships between the two phenomena, in which a weak ISM occurs during the developing phase of an El Ni?o event in the Pacific, are closely resembling the observed ones. Evidence is presented to show that these improvements are related to changes in the characteristics of the model’s El Ni?o which has a more realistic evolution in its developing and decaying phases, a stronger amplitude and a shift to lower frequencies when a 2-hourly SST coupling strategy is implemented without any significant changes in the basic state of the CGCM. As a consequence of these improvements in ENSO variability, the lead relationships between Indo-Pacific SSTs and ISM rainfall resemble the observed patterns more closely, the ISM–ENSO teleconnection is strengthened during boreal summer and ISM rainfall power spectrum is in better agreement with observations. On the other hand, the ISM–IOD teleconnection is sensitive to both SST coupling frequency and the vertical oceanic resolution, but increasing the vertical oceanic resolution is degrading the ISM–IOD teleconnection in the CGCM. These results highlight the need of a proper assessment of both temporal scale interactions and coupling strategies in order to improve current CGCMs. These results, which must be confirmed with other CGCMs, have also important implications for dynamical seasonal prediction systems or climate change projections of the monsoon.  相似文献   
64.
Using both empirical and numerical ensemble approaches this study focuses on the Mediterranean/West African relationship in northern summer. Statistical analyses utilize skin temperature, sea surface temperature, in situ and satellite rainfall, outgoing longwave radiation (OLR) observations and reanalyzed data winds and specific humidity on isobaric surfaces. Numerical investigations are based on a large set of sensitivity experiments performed on four atmospheric general circulation models (AGCM): ARPEGE-Climat3, ECHAM4, LMDZ4 and UCLA7.3. Model outputs are compared to observations, discussed model by model and with an ensemble (multi-model) approach. As in previous studies the anomalous Mediterranean warm events are associated with specific impacts over the African monsoon region, i.e., a more intense monsoon, enhanced flux convergence and ascendances around the ITCZ, a strengthening of low level moisture advection and a more northward location of ascending motion in West Africa. The results show also new features (1) thermal variability observed in the two Mediterranean basins has unalike impacts, i.e. the western Mediterranean covaries with convection in Gulf of Guinea, while the eastern Mediterranean can be interpreted as Sahelian thermal-forcing; (2) although observations show symmetry between warming and cooling, modelling evidences only support the eastern warming influence; (3) anomalous East warm situations are associated with a more northward migration of the monsoon system accompanied by enhanced southwertely flow and weakened northeasterly climatological wind; (4) the multi-model response shows that anomalous East warm surface temperatures generate an enhancement of the overturning circulation in low and high levels, an increase in TEJ (Tropical Eeasterly Jet) and a decrease in AEJ (African Eeasterly Jet).  相似文献   
65.
66.
We explore the dependence of the subhalo mass function on the spectral index n of the linear matter power spectrum using scale-free Einstein-de Sitter simulations with   n =−1  and −2.5. We carefully consider finite volume effects that may call into question previous simulations of   n < −2  power spectra. Subhaloes are found using a 6D friends-of-friends algorithm in all haloes originating from high-σ peaks. For   n =−1  , we find that the cumulative subhalo mass function is independent of the parameters used in the subhalo finding algorithm and is consistent with the subhalo mass function found in Λ cold dark matter (ΛCDM) simulations. In particular, the subhalo mass function is well fit by a power-law with an index of  α=−0.9  , that is the mass function has roughly equal mass in subhaloes per logarithmic interval in subhalo mass. Conversely, for   n =−2.5  , the algorithm parameters affect the subhalo mass function since subhaloes are more triaxial with less well-defined boundaries. We find that the index α is generally larger with  α≳−0.75  . We infer that although the subhalo mass function appears to be independent of n so long as   n ≳−2  , it begins to flatten as   n →−3  . Thus, the common practice of using  α≈−1.0  may greatly overestimate the number of subhaloes at the smallest scales in the CDM hierarchy.  相似文献   
67.
Meyer-Vernet  N.  Maksimovic  M.  Czechowski  A.  Mann  I.  Zouganelis  I.  Goetz  K.  Kaiser  M. L.  St. Cyr  O. C.  Bougeret  J.-L.  Bale  S. D. 《Solar physics》2009,256(1-2):463-474
Solar Physics - The STEREO wave instrument (S/WAVES) has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles...  相似文献   
68.
St. Cyr  O. C.  Kaiser  M. L.  Meyer-Vernet  N.  Howard  R. A.  Harrison  R. A.  Bale  S. D.  Thompson  W. T.  Goetz  K.  Maksimovic  M.  Bougeret  J.-L.  Wang  D.  Crothers  S. 《Solar physics》2009,256(1-2):475-488

Early in the STEREO mission observers noted that the white-light instruments of the SECCHI suite were detecting significantly more spacecraft-related “debris” than any previously flown coronagraphic instruments. Comparison of SECCHI “debris storms” with S/WAVES indicates that almost all are coincident with the most intense transient emissions observed by the radio and plasma waves instrument. We believe the debris is endogenous (i.e., from the spacecraft thermal blanketing), and the storms appear to be caused by impacts of large interplanetary dust grains that are detected by S/WAVES. Here we report the observations, compare them to interplanetary dust distributions, and document a reminder for future spacebased coronagraphic instrument builders.

  相似文献   
69.
GETEMME (Gravity, Einstein??s Theory, and Exploration of the Martian Moons?? Environment), a mission which is being proposed in ESA??s Cosmic Vision program, shall be launched for Mars on a Soyuz Fregat in 2020. The spacecraft will initially rendezvous with Phobos and Deimos in order to carry out a comprehensive mapping and characterization of the two satellites and to deploy passive Laser retro-reflectors on their surfaces. In the second stage of the mission, the spacecraft will be transferred into a lower 1500-km Mars orbit, to carry out routine Laser range measurements to the reflectors on Phobos and Deimos. Also, asynchronous two-way Laser ranging measurements between the spacecraft and stations of the ILRS (International Laser Ranging Service) on Earth are foreseen. An onboard accelerometer will ensure a high accuracy for the spacecraft orbit determination. The inversion of all range and accelerometer data will allow us to determine or improve dramatically on a host of dynamic parameters of the Martian satellite system. From the complex motion and rotation of Phobos and Deimos we will obtain clues on internal structures and the origins of the satellites. Also, crucial data on the time-varying gravity field of Mars related to climate variation and internal structure will be obtained. Ranging measurements will also be essential to improve on several parameters in fundamental physics, such as the Post-Newtonian parameter ?? as well as time-rate changes of the gravitational constant and the Lense-Thirring effect. Measurements by GETEMME will firmly embed Mars and its satellites into the Solar System reference frame.  相似文献   
70.
Water bodies in Tanzania are experiencing increased siltation, which is threatening water quality, ecosystem health, and livelihood security in the region. This phenomenon is caused by increasing rates of upstream soil erosion and downstream sediment transport. However, a lack of knowledge on the contributions from different catchment zones, land-use types, and dominant erosion processes, to the transported sediment is undermining the mitigation of soil degradation at the source of the problem. In this context, complementary sediment source tracing techniques were applied in three Tanzanian river systems to further the understanding of the complex dynamics of soil erosion and sediment transport in the region. Analysis of the geochemical and biochemical fingerprints revealed a highly complex and variable soil system that could be grouped in distinct classes. These soil classes were unmixed against riverine sediment fingerprints using the Bayesian MixSIAR model, yielding proportionate source contributions for each catchment. This sediment source tracing indicated that hillslope erosion on the open rangelands and maize croplands in the mid-zone contributed over 75% of the transported sediment load in all three river systems during the sampling time-period. By integrating geochemical and biochemical fingerprints in sediment source tracing techniques, this study demonstrated links between land use, soil erosion and downstream sediment transport in Tanzania. This evidence can guide land managers in designing targeted interventions that safeguard both soil health and water quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号