首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1502篇
  免费   82篇
  国内免费   13篇
测绘学   27篇
大气科学   110篇
地球物理   410篇
地质学   546篇
海洋学   127篇
天文学   233篇
综合类   12篇
自然地理   132篇
  2023年   10篇
  2022年   8篇
  2021年   31篇
  2020年   27篇
  2019年   23篇
  2018年   48篇
  2017年   45篇
  2016年   52篇
  2015年   45篇
  2014年   65篇
  2013年   102篇
  2012年   59篇
  2011年   88篇
  2010年   72篇
  2009年   102篇
  2008年   81篇
  2007年   64篇
  2006年   62篇
  2005年   60篇
  2004年   53篇
  2003年   48篇
  2002年   58篇
  2001年   21篇
  2000年   19篇
  1999年   21篇
  1998年   21篇
  1997年   18篇
  1996年   27篇
  1995年   18篇
  1994年   14篇
  1993年   5篇
  1992年   20篇
  1991年   5篇
  1990年   9篇
  1989年   11篇
  1988年   12篇
  1987年   17篇
  1986年   14篇
  1985年   13篇
  1984年   15篇
  1983年   16篇
  1982年   15篇
  1981年   11篇
  1980年   15篇
  1979年   9篇
  1978年   6篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
  1973年   3篇
排序方式: 共有1597条查询结果,搜索用时 0 毫秒
111.
Darcy’s law is the equation of reference widely used to model aquifer flows. However, its use to model karstic aquifers functioning with large pores is problematic. The physics occurring within the karstic conduits requires the use of a more representative macroscopic equation. A hydrodynamic model is presented which is adapted to the karstic aquifer of the Val d’Orléans (France) using two flow equations: (1) Darcy’s law, used to describe water flow within the massive limestone, and (2) the Brinkman equation, used to model water flow within the conduits. The flow equations coupled with the transport equation allow the prediction of the karst transfer properties. The model was tested by using six dye tracer tests and compared to a model that uses Darcy’s law to describe the flow in karstic conduits. The simulations show that the conduit permeability ranges from 5?×?10?6 to 5.5?×?10?5?m2 and the limestone permeability ranges from 8?×?10?11 to 6?×?10?10?m2. The dispersivity coefficient ranges from 23 to 53 m in the conduits and from 1 to 5 m in the limestone. The results of the simulations carried out using Darcy’s law in the conduits show that the dispersion towards the fractures is underestimated.  相似文献   
112.
Analysis of groundwater chemistry can yield important insights about subsurface conditions, and provide an alternative and complementary method for characterizing basin hydrogeology, especially in areas where hydraulic data are limited. More specifically, hydrochemical facies have been used for decades to help understand basin flow and transport, and a set of facies were developed for the Roswell Artesian Basin (RAB) in a semi-arid part of New Mexico, USA. The RAB is an important agricultural water source, and is an excellent example of a rechargeable artesian system. However, substantial uncertainties about the RAB hydrogeology and groundwater chemistry exist. The RAB was a great opportunity to explore hydrochemcial facies definition. A set of facies, derived from fingerprint diagrams (graphical approach), existed as a basis for testing and for comparison to principal components, factor analysis, and cluster analyses (statistical approaches). Geochemical data from over 300 RAB wells in the central basin were examined. The statistical testing of fingerprint-diagram-based facies was useful in terms of quantitatively evaluating differences between facies, and for understanding potential controls on basin groundwater chemistry. This study suggests the presence of three hydrochemical facies in the shallower part of the RAB (mostly unconfined conditions) and three in the deeper artesian system of the RAB. These facies reflect significant spatial differences in chemistry in the basin that are associated with specific stratigraphic intervals as well as structural features. Substantial chemical variability across faults and within fault blocks was also observed.  相似文献   
113.
Following the recent unexpected earthquake events of 2004 and 2011, it can be cautiously extrapolated that all major subduction zones bearing the capacity to produce mega-earthquake events will eventually do so given enough time, irrespective of the lack of such in the relatively short historical record. This notion has led to an effort of assigning maximum earthquake magnitudes to all major subduction zones, either based on geological constraints or based on size–frequency relations, or a combination of both. In this study, we utilize the proposed maximum magnitudes to assess tsunami hazard in Central California in the very long return periods. We also assessed tsunami hazard following an alternative methodology to calculate maximum magnitudes, which uses scaling relations for subduction zone earthquakes and maximum fault rupture scenarios found in literature. A sensitivity analysis is performed for Central California that is applicable to any coastal site in the Pacific Rim and can readily provide a strong indication for which subduction zones beam the most energy toward a study area. The maximum earthquake scenarios are then narrowed down to a few candidates, for which the initial conditions are examined in more detail. The chosen worst-case scenarios for Central California stem from the Alaska–Aleutian subduction zone that beams more energy and generates the biggest amplitude waves toward the study area. The largest tsunami scenario produces maximum free surface elevations of 15 m and run-up heights greater than 20 m.  相似文献   
114.
Much is known about how climate change impacts ecosystem richness and turnover, but we have less understanding of its influence on ecosystem structures. Here, we use ecological metrics (beta diversity, compositional disorder and network skewness) to quantify the community structural responses of temperature-sensitive chironomids (Diptera: Chironomidae) during the Late Glacial (14 700–11 700 cal a bp ) and Holocene (11 700 cal a bp to present). Analyses demonstrate high turnover (beta diversity) of chironomid composition across both epochs; however, structural metrics stayed relatively intact. Compositional disorder and skewness show greatest structural change in the Younger Dryas, following the rapid, high-magnitude climate change at the Bølling–Allerød to Younger Dryas transition. There were fewer climate-related structural changes across the early to mid–late Holocene, where climate change was more gradual and lower in magnitude. The reduced impact on structural metrics could be due to greater functional resilience provided by the wider chironomid community, or to the replacement of same functional-type taxa in the network structure. These results provide insight into how future rapid climate change may alter chironomid communities and could suggest that while turnover may remain high under a rapidly warming climate, community structural dynamics retain some resilience.  相似文献   
115.
116.
In 2008, the stable seagrass beds of the Mira estuary (SW Portugal) disappeared completely; however, during 2009, they have begun to present early symptoms of natural recovery, characterised by a strongly heterogeneous distribution. This study was designed to investigate the spatial and temporal variability patterns of species composition, densities and trophic composition of the benthic nematode assemblages in this early recovery process, at two sampling sites with three stations each and at five sampling occasions. Because of the erratic and highly patchy seagrass recovery and the high environmental similarity of the two sampling sites, we expected within-site variability in nematode assemblages to exceed between-site variability. However, contrary to that expectation, whilst nematode genus composition was broadly similar between sites, nematode densities differed significantly between sites, and this between-site variability exceeded within-site variability. This may be linked to differences in the Zostera recovery patterns between both sites. In addition, no clear temporal patterns of nematode density, trophic composition and diversity were evident. Nematode assemblages generally resembled those of other estuarine muddy intertidal areas, which have a high tolerance of stress conditions.  相似文献   
117.
The monitoring of turbidity currents enables accurate internal structure and timing of these flows to be understood. Without monitoring, triggers of turbidity currents often remain hypothetical and are inferred from sedimentary structures of deposits and their age. In this study, the bottom currents within 20 m of the seabed in one of the Pointe-des-Monts (Gulf of St. Lawrence, eastern Canada) submarine canyons were monitored for two consecutive years using Acoustic Doppler Current Profilers. In addition, multibeam bathymetric surveys were carried out during deployment of the Acoustic Doppler Current Profilers and recovery operations. These new surveys, along with previous multibeam surveys carried out over the last decade, revealed that crescentic bedforms have migrated upslope by about 20 to 40 m since 2007, despite the limited supply of sediment on the shelf or river inflow in the region. During the winter of 2017, two turbidity currents with velocities reaching 0·5 m sec−1 and 2·0 m sec−1, respectively, were recorded and were responsible for the rapid (<1 min) upstream migration of crescentic bedforms measured between the autumn surveys of 2016 and 2017. The 200 kg (in water) mooring was also displaced 10 m down-canyon, up the stoss side of a bedform, suggesting that a dense basal layer could be driving the flow during the first minute of the event. Two other weaker turbidity currents with speeds <0·5 m sec−1 occurred, but did not lead to any significant change on the seabed. These four turbidity currents coincided with strong and sustained wind speed >60 km h−1 and higher than normal wave heights. Repeat seabed mapping suggests that the turbidity currents cannot be attributed to a canyon-wall slope failure. Rather, sustained windstorms triggered turbidity currents either by remobilizing limited volumes of sediment on the shelf or by resuspending sediment in the canyon head. Turbidity currents can thus be triggered when the sediment volume available is limited, likely by eroding and incorporating canyon thalweg sediment in the flow, thereby igniting the flow. This process appears to be particularly important for the generation of turbidity currents capable of eroding the lee side of upslope migrating bedforms in sediment-starved environments and might have wider implications for the activity of submarine canyons worldwide. In addition, this study suggests that a large external trigger (in this case storms) is required to initiate turbidity currents in sediment-starved environments, which contrasts with supply-dominated environments where turbidity currents are sometimes recorded without a clear triggering mechanism.  相似文献   
118.
119.
The geochemical processes occurring within meromictic Lake A (maxdepth 120 m) on northern Ellesmere Island, Canada, were investigated to determinethe history of the lake and to provide a baseline for future studies. The lake contained seawaterdiluted by freshwater input that had been mixed prior to the lake's isolation from tidalaction. Input of freshwater after isolation of the lake created vertical stratification resultingin the creation of distinct oxic, suboxic and anoxic zones. Dissolved oxygen was present to 13 m,and sulphide beneath 32 m. Manganese and iron cycling dominated the redox chemistrybetween these depths. Total manganese concentrations reached 176 M, higher thanin most other natural stratified lake or marine environments.  相似文献   
120.
In the Gawler Craton, the completeness of cover concealing the crystalline basement in the region of the giant Olympic Dam Cu–Au deposit has impeded any sufficient understanding of the crustal architecture and tectonic setting of its IOCG mineral-system. To circumvent this problem, deep seismic reflection data were recently acquired from  250 line-km of two intersecting traverses, centered on the Olympic Dam deposit. The data were recorded to 18 s TWT ( 55 km). The crust consists of Neoproterozoic cover, in places more than 5 km thick, over crystalline basement with the Moho at depths of 13–14 s TWT ( 40–42 km). The Olympic Dam deposit lies on the boundary between two distinct pieces of crust, one interpreted as the Archean–Paleoproterozoic core to the craton, the other as a Meso–Neoproterozoic mobile belt. The host to the deposit, a member of the  1590 Ma Hiltaba Suite of granites, is situated above a zone of reduced impedance contrast in the lower crust, which we interpret to be source-region for its  1000 °C magma. The crystalline basement is dominated by thrusts. This contrasts with widely held models for the tectonic setting of Olympic Dam, which predict extension associated with heat from the mantle producing the high temperatures required to generate the Hiltaba Suite granites implicated in mineralization. We use the seismic data to test four hypotheses for this heat-source: mantle underplating, a mantle-plume, lithospheric extension, and radioactive heating in the lower crust. We reject the first three hypotheses. The data cannot be used to reject or confirm the fourth hypothesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号