首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
大气科学   3篇
地球物理   11篇
地质学   6篇
海洋学   1篇
天文学   11篇
自然地理   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2010年   4篇
  2008年   1篇
  2007年   1篇
  2002年   1篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
31.
A common source of uncertainty in flood inundation forecasting is the hydrograph used. Given the role of sea-air-hydro-land chain processes on the water cycle, flood hydrographs in coastal areas can be indirectly affected by sea state. This study investigates sea-state effects on precipitation, discharge, and flood inundation forecasting implementing atmospheric, ocean wave, hydrological, and hydraulic-hydrodynamic coupled models. The Chemical Hydrological Atmospheric Ocean wave System (CHAOS) was used for coupled hydro-meteorological-wave simulations ‘accounting’ or ‘not accounting’ the impact of sea state on precipitation and, subsequently, on flood hydrograph. CHAOS includes the WRF-Hydro hydrological model and the WRF-ARW meteorological model two-way coupled with the WAM wave model through the OASIS3-MCT coupler. Subsequently, the 2D HEC-RAS hydraulic-hydrodynamic model was forced by the flood hydrographs and map the inundated areas. A flash flood event occurred on 15 November 2017 in Mandra, Attica, Greece, causing 24 fatalities, and damages was selected as case study. The calibration of models was performed exploiting historical flood records and previous studies. Human interventions such as hydraulic works and the urban areas were included in the hydraulic modelling geometry domain. The representation of the resistance caused by buildings was based on Unmanned Aerial System (UAS) data while the local elevation rise method was used in the urban-flood simulation. The flood extent results were assessed using the Critical Success Index (CSI), and CSI penalize. Integrating sea-state affected the forecast of precipitation and discharge peaks, causing up to +24% and from −8% to +36% differences, respectively, improving inundation forecast by 4.5% and flooding additional approximately 70 building blocks. The precipitation forcing time step was also highlighted as significant factor in such a small-scale flash flood. The integrated multidisciplinary methodological approach could be adopted in operational forecasting for civil protection applications facilitating the protection of socio-economic activities and human lives during similar future events.  相似文献   
32.
Global observations show that strong mainshocks are preceded by decelerating preshocks which occur in the focal (seismogenic) region of the ensuing mainshock and by accelerating preshocks which occur in a broader (critical) region of the mainshock. Predictive properties of these preshocks have been expressed by empirical relations supported by theory and form the Decelerating–Accelerating Seismic Strain (D–AS) model. A respective algorithm has been developed which is used to identify the critical and seismogenic region and estimate (predict) the corresponding ensuing mainshock. In the present work a forward test of this model is performed by attempting intermediate-term prediction of future big (M ≥ 7.7) mainshocks along the western coast of south and central America. Three regions of decelerating shocks and three corresponding regions of accelerating shocks have been identified. The parameters (origin time, magnitude, epicenter coordinates) as well as their uncertainties have been estimated (predicted) for the corresponding probably ensuing three mainshocks. This forward test allows an objective evaluation of the model's ability for an intermediate-term prediction of strong shallow mainshocks.  相似文献   
33.
A semi-probabilistic approach to the seismic hazard assessment of Greece is presented. For this reason, a recent seismotectonic model for shallow and intermediate depth earthquake sources, based on historical as well as on instrumental data, was used. Different attenuation formulae were proposed for the macroseismic intensity and the strong ground motion parameters for the shallow and the intermediate focal depth shocks. The data were elaborated in terms of McGuire's computer program, which is based on the Cornell's method.A grid of equally spaced points at 20 km distance was made and the seismic hazard recurrence curves for various parameters of the seismic intensity was estimated for each point. Finally, seismic hazard maps for the area of Greece were compiled utilizing the entire range of recurrence curves. These maps depict areas of equal seismic hazard and for every area the analytical relations of the typeSI =f(Tm), whereSI is a seismic intensity parameter andTm is the mean return period, were determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号