首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   770篇
  免费   63篇
测绘学   23篇
大气科学   54篇
地球物理   254篇
地质学   231篇
海洋学   56篇
天文学   176篇
综合类   2篇
自然地理   37篇
  2023年   3篇
  2022年   4篇
  2021年   11篇
  2020年   17篇
  2019年   12篇
  2018年   39篇
  2017年   42篇
  2016年   39篇
  2015年   34篇
  2014年   43篇
  2013年   32篇
  2012年   37篇
  2011年   46篇
  2010年   48篇
  2009年   50篇
  2008年   33篇
  2007年   40篇
  2006年   22篇
  2005年   19篇
  2004年   29篇
  2003年   19篇
  2002年   23篇
  2001年   22篇
  2000年   13篇
  1999年   14篇
  1998年   15篇
  1997年   9篇
  1996年   6篇
  1995年   10篇
  1994年   4篇
  1993年   13篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1987年   3篇
  1986年   5篇
  1983年   3篇
  1982年   3篇
  1980年   6篇
  1979年   5篇
  1978年   7篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1971年   3篇
  1969年   3篇
  1968年   2篇
  1955年   3篇
排序方式: 共有833条查询结果,搜索用时 15 毫秒
131.
Thermoluminescence (TL) dating has been used to determine the age of the meteorite impact crater at Gebel Kamil (Egyptian Sahara). Previous studies suggested that the 45 m diameter structure was produced by a fall in recent times (less than 5000 years ago) of an iron meteorite impactor into quartz‐arenites and siltstones belonging to the Lower Cretaceous Gilf Kebir Formation. The impact caused the complete fragmentation of the impactor, and the formation of a variety of impactites (e.g., partially vitrified dark and light materials) present as ejecta within the crater and in the surrounding area. After a series of tests to evaluate the TL properties of different materials including shocked intra‐crater target rocks and different types of ejecta, we selected a suite of light‐colored ejecta that showed evidence of strong thermal shock effects (e.g., partial vitrification and the presence of high‐temperature and ‐pressure silica phases). The abundance of quartz in the target rocks, including the vitrified impactites, allowed TL dating to be undertaken. The variability of radioactivity of the intracrateric target rocks and the lack of direct in situ dosimetric evaluations prevented precise dating; it was, however, possible to constrain the impact in the 2000 BC–500 AD range. If, as we believe, the radioactivity measured in the fallback deposits is a reliable estimate of the mean radioactivity of the site, the narrower range 1600–400 BC (at the 2σ confidence level) can be realistically proposed.  相似文献   
132.
There can exist a hidden sector of the Universe in the form of parallel “mirror” world which has the same particle physics as the observable world and interacts with the latter only gravitationally. Big Bang nucleosynthesis bounds demand that the mirror sector should have a smaller temperature than the ordinary one. This implies that the mirror matter could play a role of dark matter, and in addition its chemical content should be dominated by helium. Here we study the evolutionary and structural properties of the mirror stars which essentially are similar to that of the ordinary stars but with higher helium contents. Being invisible in terms of photons, they could be observed only as MACHOs in the microlensing experiments. Using a numerical code, we compute evolution of stars with large helium abundances (Y = 0.30–0.80) and a wide range of masses, from 0.5 to 10 M. We found that helium dominated mirror star should have much faster evolutionary time (up to a factor 30) than the ordinary star with the same mass. In addition, we show the diagrams of luminosities, effective temperatures, central temperatures and densities, and compute the masses of the He-core at ignition and the minimum mass for carbon ignition, for different chemical compositions. The general conclusion is that mirror stars evolve faster as compared to ordinary ones, and explode earlier as type II supernovae, thus enriching the galactic halo of processed mirror gas with higher metallicity, with implications for MACHO observations and galaxy evolution.  相似文献   
133.
The Triassic succession of the central Southern Alps (Italy) is stacked into several units bounded by south-verging low-angle thrust faults, which are related to two successive steps of crustal shortening. The thrust surfaces are cut by high-angle extensional and strike-slip faults, which controlled the emplacement of hypabissal magmatic intrusions that post-date thrusts motions. Intrusion ages based on SHRIMP U–Pb zircon dating span between 42 ± 1 and 39 ± 1 Ma, suggesting close time relationships with the earliest Adamello intrusion stages and, more in general, with the widespread calc-alkaline magmatism described in the Southern Alps. Fission-track ages of magmatic apatites are indistinguishable from U–Pb crystallization ages of zircons, suggesting that the intrusion occurred in country rocks already exhumed above the partial annealing zone of apatite (depth < 2–4 km). These data indicate that the central Southern Alps were already structured and largely exhumed in the Middle Eocene. Although we describe minor faults affecting magmatic bodies and local reactivations of older structures, no major internal deformations have occurred in the area after the Bartonian. Neogene deformations were instead concentrated farther south, along the frontal part of the belt.  相似文献   
134.
Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled.  相似文献   
135.
We present the 21-cm rotation curve of the nearby galaxy M33 out to a galactocentric distance of 16 kpc (13 disc scalelengths). The rotation curve keeps rising out to the last measured point and implies a dark halo mass ≳5×1010 M. The stellar and gaseous discs provide virtually equal contributions to the galaxy gravitational potential at large galactocentric radii, but no obvious correlation is found between the radial distribution of dark matter and the distribution of stars or gas.
Results of the best fit to the mass distribution in M33 picture a dark halo which controls the gravitational potential from 3 kpc outward, with a matter density which decreases radially as R −1.3. The density profile is consistent with the theoretical predictions for structure formation in hierarchical clustering cold dark matter (CDM) models, and favours lower mass concentrations than those expected in the standard cosmogony.  相似文献   
136.
137.
In this paper we show how the performance of the joint hypocentre determination (JHD) method can be improved, leading to reduced instability in cases close to singularity. The method has been extended by imposing a number of constraints introduced by other authors, and adding a new one. We tested the stability of the method and the relative advantages of the various constraints by simulating a geometrical space distribution of hypocentres recorded by a regional seismic network. We then applied this method to deep earthquakes that occurred in the Southern Tyrrhenian Sea subduction zone and to the seismicity of the Northern Apennines, which is moderately deeper than the typical shallow seismicity of the Apennines. The results obtained from the analysis of synthetic data and actual earthquakes confirm that the JHD method produces less scatter in the hypocentral determinations with respect to the standard locations. The main conclusion of our study is that we can significantly reduce the systematic mislocations that result from applying JHD to very clustered seismicity if we introduce the appropriate set of constraints.  相似文献   
138.
139.
We investigate the flux of main-belt asteroid fragments into resonant orbits converting them into near-Earth asteroids (NEAs), and the variability of this flux due to chance interasteroidal collisions. A numerical model is used, based on collisional physics consistent with the results of laboratory impact experiments. The assumed main-belt asteroid size distribution is derived from that of known asteroids extrapolated down to sizes of ≈ 40 cm, modified in such a way to yield a quasi-stationary fragment production rate over times ≈ 100 Myr. The results show that the asteroid belt can supply a few hundred km-sized NEAs per year, well enough to sustain the current population of such bodies. On the other hand, if our collisional physics is correct, the number of existing 10-km objects implies that these objects either have very long-lived orbits, or must come from a different source (i.e., comets). Our model predicts that the fragments supplied from the asteroid belt have initially a power-law size distribution somewhat steeper than the observed one, suggesting preferential removal of small objects. The component of the NEA population with dynamical lifetimes shorter than or of the order of 1 Myr can vary by a factor reaching up to a few tens, due to single large-scale collisions in the main belt; these fluctuations are enhanced for smaller bodies and faster evolutionary time scales. As a consequence, the Earth's cratering rate can also change by about an order of magnitude over the 0.1 to 1 Myr time scales. Despite these sporadic spikes, when averaged over times of 10 Myr or longer the fluctuations are unlikely to exceed a factor two.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号