首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   13篇
  国内免费   2篇
测绘学   2篇
大气科学   20篇
地球物理   112篇
地质学   107篇
海洋学   26篇
天文学   45篇
综合类   2篇
自然地理   17篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2019年   5篇
  2018年   16篇
  2017年   10篇
  2016年   14篇
  2015年   19篇
  2014年   19篇
  2013年   15篇
  2012年   19篇
  2011年   17篇
  2010年   20篇
  2009年   21篇
  2008年   26篇
  2007年   8篇
  2006年   8篇
  2005年   10篇
  2004年   16篇
  2003年   8篇
  2002年   11篇
  2001年   4篇
  2000年   10篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1980年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
301.
The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.  相似文献   
302.
Rainfall-induced debris flows involving ash-fall pyroclastic deposits that cover steep mountain slopes surrounding the Somma-Vesuvius volcano are natural events and a source of risk for urban settlements located at footslopes in the area. This paper describes experimental methods and modelling results of shallow landslides that occurred on 5–6 May 1998 in selected areas of the Sarno Mountain Range. Stratigraphical surveys carried out in initiation areas show that ash-fall pyroclastic deposits are discontinuously distributed along slopes, with total thicknesses that vary from a maximum value on slopes inclined less than 30° to near zero thickness on slopes inclined greater than 50°. This distribution of cover thickness influences the stratigraphical setting and leads to downward thinning and the pinching out of pyroclastic horizons. Three engineering geological settings were identified, in which most of the initial landslides that triggered debris flows occurred in May 1998 can be classified as (1) knickpoints, characterised by a downward progressive thinning of the pyroclastic mantle; (2) rocky scarps that abruptly interrupt the pyroclastic mantle; and (3) road cuts in the pyroclastic mantle that occur in a critical range of slope angle. Detailed topographic and stratigraphical surveys coupled with field and laboratory tests were conducted to define geometric, hydraulic and mechanical features of pyroclastic soil horizons in the source areas and to carry out hydrological numerical modelling of hillslopes under different rainfall conditions. The slope stability for three representative cases was calculated considering the real sliding surface of the initial landslides and the pore pressures during the infiltration process. The hydrological modelling of hillslopes demonstrated localised increase of pore pressure, up to saturation, where pyroclastic horizons with higher hydraulic conductivity pinch out and the thickness of pyroclastic mantle reduces or is interrupted. These results lead to the identification of a comprehensive hydrogeomorphological model of susceptibility to initial landslides that links morphological, stratigraphical and hydrological conditions. The calculation of intensities and durations of rainfall necessary for slope instability allowed the identification of deterministic hydrological thresholds that account for uncertainty in properties and observed rainfall intensities.  相似文献   
303.
304.
The concept of‘syntectonic’ conglomerate is based on the idea that gravel progradation is mainly generated by an increase in tectonic uplift and erosion of a source area with attendant increase in sediment flux supplied to a basin. However, other mechanisms, such as changes in basin subsidence rates, sorting of supplied sediment, and capability of transporting streams, can also lead to progradation and be difficult to distinguish from a syntectonic origin. Here we use our previously developed model to help understand the origin of gravel progradation in three Neogene alluvial basins - the Bermejo Basin of Argentina, the Himalayan Foreland Basin, and the San Pedro Basin of southern Arizona - all of which have available high-resolution magnetostratigraphy. Interpretation of the origin of gravel progradation in these basins begins with calculation of basin equilibrium time, which is the time-scale required for the streams to reach a steady-state profile, assuming constant conditions. We then compare the time-scale of the observed changes in the basin with the equilibrium time to determine if and how the model can be applied to the stratigraphic record. Most of the changes we have studied occur on time scales longer than the equilibrium time (‘slow variations’), in which case the key to interpretation is the relationship between overall grain-size change and sedimentation rate in vertical sections. Of the three examples studied only one, the Bermejo Basin, is consistent with the traditional model of syntectonic progradation. Overall progradation in the two other basins is most consistent with a long-term reduction in basin subsidence rates. In addition, short-term variation in diffusivity or sediment flux, probably climatically driven, is the most likely control of small-scale progradation of gravel tongues in the San Pedro Basin. These results, along with observations from other basins, suggest that subsidence is clearly an important control on clastic progradation on ‘slow’ time scales (i.e. generally a million years or more). If subsidence rates are directly linked to tectonic events, then subsidence-driven progradation marks times of tectonic quiescence and is clearly not syntectonic in the traditional sense. These examples show that the model can be useful in interpreting the rock record, particularly when combined with other traditional basin-analysis techniques. In particular, our results can be used to help discriminate between clastic progradation due to tectonic origin and progradation resulting from other mechanisms in alluvial basins.  相似文献   
305.
The influence of strong-motion duration on the response of saturated soils is clearly recognised and accounted for in the assessment of liquefaction potential. The degree to which duration of shaking influences damage to structures, however, remains a topic of debate, with resolution of the issue complicated by the variety of definitions of duration and the variety of structural behaviours, as well as the difficulty of decoupling the specific effect of duration from other features of the ground motion. A suite of seven structural models with strength and stiffness degrading characteristics, designed to reflect the seismic behaviour of masonry structures commonly encountered in many parts of Europe, are analysed using a suite of almost 500 strong-motion accelerograms. Correlations are explored between the damage, measured in terms of the strength degradation, and a range of strong-motion parameters, demonstrating that Arias intensity and spectral acceleration at the fundamental initial period of the structure are both reasonably good damage indicators for such structures. A significantly improved correlation is obtained by using the elastic spectral accelerations averaged over a period range from the initial period of the structure to a value approximately three times greater, reflecting the stiffness degradation as the shaking progresses. The scatter in the correlation is shown to be partially explained by differences in duration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
306.
307.
The potential use of spent coffee ground (SCG) for the removal of copper has been investigated as a low‐cost adsorbent for the biosorption of heavy metals. Adsorption batch experiments were conducted to determine isotherms and kinetics. The biosorption equilibrium data were found to fit well the Freundlich model and an experimental maximum biosorption capacity of copper ions 0.214 mmol/g was achieved. The biosorption kinetics of SCG was studied at different adsorbate concentrations (0.1–1.0 mM) and stirring speeds (100–400/min). The results showed an increase in the copper ion uptake with raising the initial metal concentration and the kinetic data followed the pseudo‐second order rate expression. The effect of stirring speed was a significant factor for the external mass transfer resistance at 100/min and coefficients were estimated by the Mathews and Weber model. Biosorption of copper ions onto SCG was observed to be related mainly with the release of calcium and hydrogen ions suggesting that biosorption performance by SCG can be attributed to ion‐exchange mechanism with calcium and hydrogen ions neutralizing the carboxyl and hydroxyl groups of the biomass.  相似文献   
308.
During the 2006 Italian Antarctic expedition a diel sampling was performed close to Cape Hallett (Ross Sea) during the Austral summer. Under-ice seawater samples (4 m) were collected every 2 h for 28 h in order to estimate prokaryotic processes' variability and community structure dynamics. Prokaryotic and viral abundances, exoenzymatic activities (β-glucosidase, chitinase, lipase, alkaline phosphatase and leucine aminopeptidase), prokaryotic carbon production (3H-leucine incorporation) and community structure (Denaturing Gradient Gel Electrophoresis – DGGE fingerprints) were analysed. Results showed that the diel variability of the prokaryotic activity followed a variation in salinity, probably as a consequence of the periodical thawing of sea ice (driven by solar radiation and air temperature cycles), while negligible variation in viral and prokaryotic abundances occurred. The Bacterial and Archaeal community structures underwent an Operational Taxonomic Units (OTUs) temporal shift from the beginning to the end of the sampling, while Flavobacteria-specific primers highlighted high variations in this group possibly related to sea ice melting and substrate release.  相似文献   
309.
Resistive instabilities in a context referring to the solar corona are rigorously investigated. Various equilibrium configurations are considered, differing, among other things, by their behaviour with respect to fast, ideal instabilities. The computations presented cover in a unified scheme all known regimes of resistive modes and allow one to determine the fastest timescale over which resistivity can play a role. Comparisons with previous work as well as possible extensions are presented.  相似文献   
310.
We report on clear‐sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE‐2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in‐situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space‐borne NOAA/AVHRR data and ground‐based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud‐free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in‐situ aerosol size‐distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (λ=380–1060 nm) is 3–8%. In the MBL there is a tendency for the in‐situ results to be slightly lower than the sunphotometer measurements (10–17% at λ=525 nm), but these differences are within the combined error bars of the measurements and computations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号