首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   13篇
  国内免费   2篇
测绘学   2篇
大气科学   20篇
地球物理   112篇
地质学   107篇
海洋学   26篇
天文学   45篇
综合类   2篇
自然地理   17篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2019年   5篇
  2018年   16篇
  2017年   10篇
  2016年   14篇
  2015年   19篇
  2014年   19篇
  2013年   15篇
  2012年   19篇
  2011年   17篇
  2010年   20篇
  2009年   21篇
  2008年   26篇
  2007年   8篇
  2006年   8篇
  2005年   10篇
  2004年   16篇
  2003年   8篇
  2002年   11篇
  2001年   4篇
  2000年   10篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1980年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
281.
In this work, we map the absorption properties of the French crust by analyzing the decay properties of coda waves. Estimation of the coda quality factor \(Q_{c}\) in five non-overlapping frequency-bands between 1 and 32 Hz is performed for more than 12,000 high-quality seismograms from about 1700 weak to moderate crustal earthquakes recorded between 1995 and 2013. Based on sensitivity analysis, \(Q_{c}\) is subsequently approximated as an integral of the intrinsic shear wave quality factor \(Q_{i}\) along the ray connecting the source to the station. After discretization of the medium on a 2-D Cartesian grid, this yields a linear inverse problem for the spatial distribution of \(Q_{i}\). The solution is approximated by redistributing \(Q_{c}\) in the pixels connecting the source to the station and averaging over all paths. This simple procedure allows to obtain frequency-dependent maps of apparent absorption that show lateral variations of \(50\%\) at length scales ranging from 50 km to 150 km, in all the frequency bands analyzed. At low frequency, the small-scale geological features of the crust are clearly delineated: the Meso-Cenozoic basins (Aquitaine, Brabant, Southeast) appear as strong absorption regions, while crystalline massifs (Armorican, Central Massif, Alps) appear as low absorption zones. At high frequency, the correlation between the surface geological features and the absorption map disappears, except for the deepest Meso-Cenozoic basins which exhibit a strong absorption signature. Based on the tomographic results, we explore the implications of lateral variations of absorption for the analysis of both instrumental and historical seismicity. The main conclusions are as follows: (1) current local magnitude \(M_{L}\) can be over(resp. under)-estimated when absorption is weaker(resp. stronger) than the nominal value assumed in the amplitude-distance relation; (2) both the forward prediction of the earthquake macroseismic intensity field and the estimation of historical earthquake seismological parameters using macroseismic intensity data are significantly improved by taking into account a realistic 2-D distribution of absorption. In the future, both \(M_{L}\) estimations and macroseismic intensity attenuation models should benefit from high-resolution models of frequency-dependent absorption such as the one produced in this study.  相似文献   
282.
The estimation of the seismological parameters of historical earthquakes is a key step when performing seismic hazard assessment in moderate seismicity regions as France. We propose an original method to assess magnitude and depth of historical earthquakes using intensity data points. A flowchart based on an exploration tree (ET) approach allows to apply a consistent methodology to all the different configurations of the earthquake macroseismic field and to explore the inherent uncertainties. The method is applied to French test case historical earthquakes, using the SisFrance (BRGM, IRSN, EDF) macroseismic database and the intensity prediction equations (IPEs) calibrated in the companion paper (Baumont et al. Bull Earthq Eng, 2017). A weighted least square scheme allowing for the joint inversion of magnitude and depth is applied to earthquakes that exhibit a decay of intensity with distance. Two cases are distinguished: (1) a “Complete ET” is applied to earthquakes located within the metropolitan territory, while (2) a “Simplified ET” is applied to both, offshore and cross border events, lacking information at short distances but disposing of reliable data at large ones. Finally, a priori-depth-based magnitude computation is applied to ancient or poorly documented events, only described by single/sporadic intensity data or few macroseismic testimonies. Specific processing of “felt” testimonies allows exploiting this complementary information for poorly described earthquakes. Uncertainties associated to magnitude and depth estimates result from both, full propagation of uncertainties related to the original macroseismic information and the epistemic uncertainty related to the IPEs selection procedure.  相似文献   
283.
Resistive instabilities in a context referring to the solar corona are rigorously investigated. Various equilibrium configurations are considered, differing, among other things, by their behaviour with respect to fast, ideal instabilities. The computations presented cover in a unified scheme all known regimes of resistive modes and allow one to determine the fastest timescale over which resistivity can play a role. Comparisons with previous work as well as possible extensions are presented.  相似文献   
284.
285.
The thermal behaviour of microsommite (MC), davyne from Vesuvius (DV) and from Zabargad (DZ) was determined by X-ray single crystal data obtained employing a microfurnace connected to a four-circle diffractometer. Upon heating, the a parameter increased linearly, with similar thermal expansion rates for the three samples: the mean linear expansion coefficients, a , were 10.2(3)·10-6, 13.4(7)·10-6, 15.1(8)·10-1 K-1 for MC, DV and DZ respectively.At about 473 K both MC and DZ showed a discontinuity in the expansion of the c parameter. The mean linear expansion coefficient, c , changed abruptly from 16(4)·10-6 K-1 for both minerals below the discontinuity to 2(1)·10-6 and 3(1)·10-6 K-1 for MC and DZ, respectively, above the discontinuity. In DV, however, the c coefficient was constant between 293 und 827 K and equal to 1(2)·10-6 K-1.  相似文献   
286.
This study addresses the initiation mechanisms of mass failures on clinoform foresets. Previous studies have created mass flows by releasing dense water–sediment mixtures into standing water, thus imposing the initial conditions for the mass failures rather than allowing them to form on their own. Para‐meters such as the density, composition and initial momentum of the failures are pre‐determined, precluding observation of the factors that set them initially. This study uses a new experimental method that allows a range of mass failures to self‐generate. Building a clinoform using a cohesive mixture of walnut‐shell sand and kaolinite allows the foreset to build up and fail episodically, generating mass failures. Slopes undergo a series of morphological changes prior to failure, creating a concave shape that becomes exaggerated as deposition continues. This morphology leaves the slope in a metastable state. Once the slope is destabilised, failure is initiated. This study investigates the effect of clinoform progradation rates on failure size and frequency by conducting experiments over a range of water and sediment discharge rates. Neither failure size nor failure frequency changes with discharge rate; instead, increases in sediment supply are taken up by changes in the partitioning of sediment between the steep upper foreset and the more gradual delta‐front apron (toeset) below. Sediment is delivered to the delta‐front apron by a form of semi‐continuous slow creep along the foreset. This slow creep is a failure mode that has not received sufficient attention in the submarine mass‐flow literature. The independence of failure size and frequency from sediment supply rate suggests that the presence of mass‐failure deposits does not provide information on the rate of sediment delivery. If these relations hold at field scales, this would imply that individual mass failures are relatively insensitive to changes in water and sediment supply.  相似文献   
287.
Identifying urban flooding risk hotspots is one of the first steps in an integrated methodology for urban flood risk assessment and mitigation. This work employs three GIS-based frameworks for identifying urban flooding risk hotspots for residential buildings and urban corridors. This is done by overlaying a map of potentially flood-prone areas [estimated through the topographic wetness index (TWI)], a map of residential areas and urban corridors [extracted from a city-wide assessment of urban morphology types (UMT)], and a geo-spatial census dataset. A maximum likelihood method (MLE) is employed for estimating the threshold used for identifying the flood-prone areas (the TWI threshold) based on the inundation profiles calculated for various return periods within a given spatial window. Furthermore, Bayesian parameter estimation is employed in order to estimate the TWI threshold based on inundation profiles calculated for more than one spatial window. For different statistics of the TWI threshold (e.g. MLE estimate, 16th percentile, 50th percentile), the map of the potentially flood-prone areas is overlaid with the map of urban morphology units, identified as residential and urban corridors, in order to delineate the urban hotspots for both UMT. Moreover, information related to population density is integrated by overlaying geo-spatial census datasets in order to estimate the number of people affected by flooding. Differences in exposure characteristics have been assessed for a range of different residential types. As a demonstration, urban flooding risk hotspots are delineated for different percentiles of the TWI value for the city of Addis Ababa, Ethiopia.  相似文献   
288.
The aim of this paper is to provide some constrains on the time behavior of earthquake generation mechanism, through the usage of a non-parametric statistics that leads up to the empirical estimation of the hazard function. The results indicate that the most characterizing temporal feature for large (M 7.0+) worldwide shallow earthquake occurrence is a clustering lasting few years, indicating that the probability of earthquake occurrence is higher immediately after the occurrence of an event. After that, the process becomes almost time independent, as in a Poisson process. Remarkably, this time clustering is very similar to what previously found for different spatio-magnitude windows, and it does not seem to depend on the tectonic style of the region. This may support the hypothesis of an universal law for earthquake occurrence.  相似文献   
289.
Natural Hazards - Flood risk maps for the built environment can be obtained by integrating geo-spatial information on hazard, vulnerability and exposure. They provide precious support for strategic...  相似文献   
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号