首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   8篇
  国内免费   3篇
测绘学   4篇
大气科学   23篇
地球物理   54篇
地质学   90篇
海洋学   16篇
天文学   28篇
综合类   1篇
自然地理   9篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2020年   5篇
  2019年   4篇
  2018年   17篇
  2017年   10篇
  2016年   16篇
  2015年   7篇
  2014年   18篇
  2013年   13篇
  2012年   12篇
  2011年   17篇
  2010年   12篇
  2009年   15篇
  2008年   13篇
  2007年   8篇
  2006年   9篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1993年   3篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有225条查询结果,搜索用时 15 毫秒
61.
62.
He  Ziguang  Nguyen  Hoang  Vu  Thai Ha  Zhou  Jian  Asteris  Panagiotis G.  Mammou  Anna 《Acta Geotechnica》2022,17(4):1257-1272
Acta Geotechnica - Soft soils are considered as disadvantages in construction, especially in clay layers. It requires many advanced techniques to treat the soft soils before construction, aiming to...  相似文献   
63.
64.
65.
66.
A hybrid method for the vulnerability assessment of R/C and URM buildings   总被引:6,自引:1,他引:6  
The methodology followed by the Aristotle University (AUTh) team for the vulnerability assessment of reinforced concrete (R/C) and unreinforced masonry (URM) structures is presented. The paper focuses on the derivation of vulnerability (fragility) curves in terms of peak ground acceleration (PGA), as well as spectral displacement (s d), and also includes the estimation of capacity curves, for several R/C and URM building types. The vulnerability assessment methodology is based on the hybrid approach developed at AUTh, which combines statistical data with appropriately processed (utilising repair cost models) results from nonlinear dynamic or static analyses, that permit extrapolation of statistical data to PGA’s and/or spectral displacements for which no data are available. The statistical data used herein are from earthquake-damaged greek buildings. An extensive numerical study is carried out, wherein a large number of building types (representing most of the common typologies in S. Europe) are modelled and analysed. Vulnerability curves for several damage states are then derived using the aforementioned hybrid approach. These curves are subsequently used in combination with the mean spectrum of the Microzonation study of Thessaloniki as the basis for the derivation of new vulnerability curves involving spectral quantities. Pushover curves are derived for all building types, then reduced to standard capacity curves, and can easily be used together with the S d fragility curves as an alternative for developing seismic risk scenarios.  相似文献   
67.
S-wave spectral analysis is applied to 174 strong motion accelerationrecords to obtain the source parameters of 27 aftershocks(3.1 ML 4.3) of the May 13, 1995, Mw 6.6,Kozani-Grevena (NW Greece) earthquake. The data are derived from atemporary network, of three-component digital accelerographs, deployedwithin the strongly affected area some days after the mainshock occurrence.Site effects were evident in the strong motion records at 3 out of the 4stations used, and a correction was applied to account for theoverestimation of seismic moment due to amplification of thelow-frequency part of the spectrum. The data from this analysis arecomplimented with previously obtained source parameters for earthquakesin Greece, in order to study the applicability of the empirical scalingrelations used so far, towards smaller magnitudes. In general, a goodcorrelation was observed in most cases, validating the use of empiricalrelations that are applicable to the Aegean area. Empirical relations aredetermined between seismic moment and seismic slip, as well as, betweenseismic moment and stress drop, applicable to small magnitude earthquakes(ML < 4.3). Stress drop values were found to be relatively small,ranging from 2 to 41 bars, indicative of inter-plate environments. Thevalues of fc and of fmax were found in good agreement withrelations based on observations from larger worldwide earthquakes.  相似文献   
68.
Eighteen new Chinese standard reference samples (including stream sediments, soils and rocks) have been analysed by an automated proton induced gamma ray emission (PIGE) method for fluorine. Results of determinations are reported and are generally in good agreement with the "usable values" previously published.  相似文献   
69.
Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure‐shear failure, which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse of a building. In this study, a hysteretic model capturing the local shear response of shear‐deficient R/C elements is described in detail, with emphasis on post‐peak behaviour; it differs from existing models in that it considers the localisation of shear strains after the onset of shear failure in a critical length defined by the diagonal failure planes. Additionally, an effort is made to improve the state of the art in post‐peak shear response modelling, by compiling the largest database of experimental results for shear and flexure‐shear critical R/C columns cycled well beyond the onset of shear failure and/or up to the onset of axial failure, and developing empirical relationships for the key parameters defining the local backbone post‐peak shear response of such elements. The implementation of the derived local hysteretic shear model in a computationally efficient beam‐column finite element model with distributed shear flexibility, which accounts for all deformation types, will be presented in a companion paper.  相似文献   
70.
Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure‐shear failure, which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse of a building. In this study, a computationally efficient member‐type finite element model for the hysteretic response of shear critical R/C frame elements up to the onset of axial failure is presented; it accounts for shear‐flexure interaction and considers, for the first time, the localisation of shear strains, after the onset of shear failure, in a critical length defined by the diagonal failure plane. Its predictive capabilities are verified against experimental results of column and frame specimens and are shown to be accurate not only in terms of total response, but also with regard to individual deformation components. The accuracy, versatility, and simplicity of this finite element model make it a valuable tool in seismic analysis of complex R/C buildings with shear deficient structural elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号