首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   695篇
  免费   9篇
  国内免费   20篇
测绘学   9篇
大气科学   43篇
地球物理   140篇
地质学   260篇
海洋学   57篇
天文学   139篇
自然地理   76篇
  2021年   3篇
  2020年   6篇
  2019年   4篇
  2018年   14篇
  2017年   14篇
  2016年   26篇
  2015年   17篇
  2014年   12篇
  2013年   27篇
  2012年   18篇
  2011年   29篇
  2010年   23篇
  2009年   35篇
  2008年   26篇
  2007年   32篇
  2006年   30篇
  2005年   24篇
  2004年   37篇
  2003年   26篇
  2002年   20篇
  2001年   21篇
  2000年   20篇
  1999年   15篇
  1998年   19篇
  1997年   17篇
  1996年   13篇
  1995年   12篇
  1994年   4篇
  1993年   7篇
  1992年   16篇
  1991年   12篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   8篇
  1984年   13篇
  1983年   12篇
  1982年   8篇
  1981年   8篇
  1980年   11篇
  1979年   5篇
  1978年   6篇
  1977年   8篇
  1976年   8篇
  1975年   9篇
  1974年   7篇
  1972年   3篇
  1964年   2篇
排序方式: 共有724条查询结果,搜索用时 15 毫秒
721.
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (? c ; N m?2), erosion rate (ER; g m?2 s?1), and change in erosion rate with increasing bed shear stress (m e ; g N?1 s?1). Collectively, these measures characterized surface (? c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in ? c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.  相似文献   
722.
Cryogenic block streams consist of a stream of rocks superficially resembling a stream deposit but lacking a matrix, usually occurring on a valley or gully floor or on slopes that are less steep than the maximum angle of repose of coarse sediments. They are usually formed on perennially frozen ground, but can also occur as relict landforms. There are three main active kinds forming today, viz., Siberian and Tibetan dynamic rock streams and lag block streams. During their formation, the blocks in the active Siberian and Tibetan dynamic block streams move downslope at up to 1 m/a. They are forming today on the Tibetan Plateau and in the more arid parts of south-central Siberia, although the processes involved in the movement are different. In the case of the Tibetan type, individual blocks slide downslope over the substrate in winter on an icy coating in areas of minimal winter precipitation. The Siberian type develops in areas of 15–80 cm of winter snow cover and an MAAT(mean annual air temperature) of-4 °C to-17 °C. The movement is due to creep of snow and ice and collapse of the blocks downslope during thawing. Lag block streams are formed by meltwater flowing over the surface of sediment consisting primarily of larger blocks with a limited amount of interstitial sediment. The erosion of the matrix is primarily in the spring in areas of higher winter precipitation on 10°–30° slopes. The blocks remain stationary, but the interstitial sediment is washed out by strong seasonal flows of meltwater or rain to form an alluvial fan. The boulders undergo weathering and become more rounded in the process. Lag block streams can also develop without the presence of permafrost in areas with cold climates or glaciers. Block streams also occur as relict deposits in older deposits under various climatic regimes that are unsuitable for their formation today. An example of relict lag block streams with subangular to subrounded blocks occurs in gullies on the forested mountainsides at Felsen in Germany, and is the original "felsenmeer". Similar examples occur near Vitosha Mountain in Bulgaria. The "stone runs" in the Falkland Islands are examples of the more angular relict lag block streams. In both Tasmania and the Falkland Islands, they mask a more complex history, the underlying soils indicating periods of tropical and temperate soil formation resulting from weathering during and since the Tertiary Period. Block streams have also been reported from beneath cold-based glaciers in Sweden, and below till in Canada, and when exhumed, can continue to develop.  相似文献   
723.
An open channel lava flow on Mt. Etna (Sicily) was observed during May 30–31, 2001. Data collected using a forward looking infrared (FLIR) thermal camera and a Minolta-Land Cyclops 300 thermal infrared thermometer showed that the bulk volume flux of lava flowing in the channel varied greatly over time. Cyclic changes in the channel's volumetric flow rate occurred over several hours, with cycle durations of 113–190 min, and discharges peaking at 0.7 m3 s−1 and waning to 0.1 m3 s−1. Each cycle was characterized by a relatively short, high-volume flux phase during which a pulse of lava, with a well-defined flow front, would propagate down-channel, followed by a period of waning flow during which volume flux lowered. Pulses involved lava moving at relatively high velocities (up to 0.29 m s−1) and were related to some change in the flow conditions occurring up-channel, possibly at the vent. They implied either a change in the dense rock effusion rate at the source vent and/or cyclic-variation in the vesicle content of the lava changing its bulk volume flux. Pulses would generally overspill the channel to emplace pāhoehoe overflows. During periods of waning flow, velocities fell to 0.05 m s–1. Blockages forming during such phases caused lava to back up. Occasionally backup resulted in overflows of slow moving ‘a‘ā that would advance a few tens of meters down the levee flank. Compound levees were thus a symptom of unsteady flow, where overflow levees were emplaced as relatively fast moving pāhoehoe sheets during pulses, and as slow-moving ‘a‘ā units during backup. Small, localized fluctuations in channel volume flux also occurred on timescales of minutes. Volumes of lava backed up behind blockages that formed at constrictions in the channel. Blockage collapse and/or enhanced flow under/around the blockage would then feed short-lived, wave-like, down-channel surges. Real fluctuations in channel volume flux, due to pulses and surges, can lead to significant errors in effusion rate calculations. Editorial responsibility: A. Woods  相似文献   
724.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号