首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   14篇
  国内免费   33篇
测绘学   5篇
大气科学   31篇
地球物理   66篇
地质学   133篇
海洋学   5篇
天文学   2篇
综合类   1篇
自然地理   13篇
  2021年   6篇
  2019年   2篇
  2015年   3篇
  2014年   4篇
  2013年   26篇
  2012年   8篇
  2011年   5篇
  2010年   3篇
  2009年   8篇
  2008年   5篇
  2007年   11篇
  2006年   4篇
  2005年   5篇
  2003年   6篇
  2002年   11篇
  2001年   14篇
  1999年   3篇
  1998年   3篇
  1997年   9篇
  1996年   19篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1984年   4篇
  1983年   3篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1974年   1篇
  1970年   2篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1965年   2篇
  1964年   1篇
  1959年   1篇
  1937年   1篇
  1934年   2篇
  1933年   4篇
  1931年   1篇
  1927年   3篇
  1926年   7篇
  1925年   2篇
  1924年   6篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
71.
72.
On Tawharanui Peninsula mudslides occur in soils developed on Waitemata Group flysch similar to that underlying much of the Auckland metropolitan area. Mudslides are shallow soil failures with a bowlshaped source area, an elongated track, and an accumulation zone. Movement may continue for decades to centuries. Modelling suggests that failure of saturated soils occurs along a basal surface defined by the regolith / bedrock contact; rates of movement and time of initiation have not been established. Reactivation or increased mobility of mudslides due to climatic change represents an increased hazard for infrastructure in Auckland City.  相似文献   
73.
In studies on river channel flow turbulence, it is often the case that the measured mean vertical velocity is different from zero, indicating that the frame of reference of the current meter is not parallel to the flow streamline. This situation affects the estimate of Reynolds shear stress in the streamwise and vertical planes and consequently the analysis of the flow turbulent structure. One way to solve this problem is to correct data by applying a rotation and this is reviewed in the first part of the paper. However, in fluvial geomorphology, the studied flow is often complex and streamlines may exhibit significant changes from one point of measurement to the other. In this context, applying a rotation complicates the situation more than it simplifies it. The second part of this paper examines the question of velocity data correction in complex flows using a field example of the turbulent boundary layer over a very rough gravel bed and a laboratory example taken from flow at a river channel confluence. In both cases, velocity vectors are spatially variable. In the first case, errors in the Reynolds shear stress estimates are relatively low (ranging from −13 to 7 per cent/deg) while in the second case, they are much larger (−200 to 164 per cent/deg). The significance of these errors on the interpretation of turbulence statistics in river channel flows is discussed. We propose that corrections should be applied in all clear cases of sensor misalignment and when the frame of reference changes spatially and temporally. However, no corrections should be used where different flow velocity vector orientations, not sensor misalignment, are responsible for the mean vertical velocity differing from zero.  相似文献   
74.
Soil surface roughness is a dynamic property which determines, to a large extent, erosion and infiltration rates. Although soils containing rock fragments are widespread in the Mediterranean region, the effect of the latter on surface roughness evolution is yet poorly understood. Therefore, laboratory experiments were conducted in order to investigate the effect of rock fragment content, rock fragment size and initial moisture content of the fine earth on the evolution of interrill surface roughness during simulated rainfall. Surface elevations of simulated plough layers along transects of 50 cm length were measured before and after simulated rainfall (totalling 192.5 mm, I = 70 mm h−1) with a laser microreliefmeter. The results were used to investigate whether systematic variations in interrill surface roughness along stony hillslopes in southeastern Spain could be attributed to rock fragment cover and rock fragment size. Soil surface elevations were measured along the contour lines (50 cm long transects) with a contact microreliefmeter. Roughness was expressed by two parameters related to the height and frequency of roughness elements, respectively: standard deviation of de-trended surface elevations (random roughness: RR), and correlation length (L) derived from exponential fits of the autocorrelation functions. The frequently used assumption that surface roughness (RR) of cultivated topsoils decreases exponentially with cumulative rain is not valid for soil surfaces covered by rock fragments. The RR of soils containing small rock fragments (1.7–2.7 cm) increased with cumulative rainfall after an initial decrease during the first 17.5 mm of rainfall. For soils containing large rock fragments (7.7 cm), RR increased with rainfall above a threshold rock fragment content by mass of 52 per cent. For a given rainfall application, RR increased non-linearly with rock fragment content. The correlation length for soils containing small rock fragments decreases with rock fragment content and is significantly lower than for soils with large rock fragments. Soils covered with small rock fragments (large RR and small L) are thus well protected against raindrop impact by a water film in the depressions between the rock fragments. On abandoned agricultural fields along hillslopes in southeastern Spain, rock fragments cover increases non-linearly with slope owing to selective erosion of finer particles on steep slopes. The increase of surface cover by large rock fragments (>25 mm) is even more pronounced. The simultaneous increase of rock fragment cover and rock fragment size with slope explains the non-linear increase of RR with slope. These relationships differ for soils covered by platy misaschists and those covered with cubic andesites. The variations in correlation length along the hillslopes are not clear, probably owing to a simultaneous increase in rock fragment cover and rock fragment size. These findings may provide a better prediction of soil surface roughness of interrill areas covered by rock fragments using slope angle and lithology.  相似文献   
75.
Heterogeneous coarse grained channels are often characterized by local transitions in bed surface roughness. Distinct spatial zones in terms of grain size have been reported, for example sand ribbons and bedload sheets. The transition from areas of finer to coarser grained surface sediment is often abrupt. However, the effects of these transitions on the shape of the velocity profile and associated shear velocity and roughness length estimates have not been investigated in detail in coarse grained channels. This paper therefore examines the combined effects of a sudden change in surface roughness and of superimposed scales of resistancé on the structure of the turbulent boundary layer. Measurements along roughness transitions from smooth to rough beds were conducted in a flume using artificial roughness features and in a natural gravel bed river. Immediately at the transition from a zone of close packed roughness to a rougher section dominated by obstacles superimposed on the more or less uniform roughness surface, boundary shear stress and roughness length increase considerably. Downstream from this transition, velocity profiles become concave upwards. Downstream and upstream sections show significant differences in terms of near bed velocities (deceleration downstream of the transition), velocity gradient and turbulence intensity of the streamwise velocity component. Comparing the mean velocity profiles corresponding to these two different roughness surfaces gives some indication of the proportion of total shear velocity (or shear stress) associated with the pressure drag produced by large and isolated obstacles.  相似文献   
76.
Microstructures in slate belt rocks at the Elura Mine, near Cobar, south-eastern Australia, indicate that volume loss by syntectonic dissolution is coupled with mass accretion by reprecipitation of the dissolved material in dilational sites. The mass accretion is sustained primarily by repetitive tensile microfracturing at high pore-fluid pressures. Oriented growth in the inter- and intragranular microcracks is locally host-controlled, creating lattice- and shape-preferred orientations. The grain-scale crack-seal features throughout the rock reflect rhythmic fluid pressure fluctuations; a balance is achieved between the fracture-induced permeability (and consequent flushing rates), and the rate of fluid build-up in a relatively sealed environment.
Instability in the balancing factors can lead to localization and intensification of tensile failure (and hence, tension vein formation) in the grain aggregate. Growth of veins by crack-seal also reflects a steady state, but with more localized fluctuations of fluid flow on the aggregate scale. Still larger imbalances between flushing and fluid accumulation (i.e. pressure variations) induce breccia veining. The larger pressure gradients over greater distances, associated with dilation localization (from pervasive microfracturing to spaced breccia domains), allow fluid channelling with an increased potential for chemical fluid/rock disequilibrium. Therefore, large breccia vein systems tend to be sites of extensive fluid/rock interaction and replacement, as spectacularly illustrated by the syntectonic sulphide orebodies at Elura. The huge amounts of silicate, carbonate and sulphide accumulated during folding at Elura illustrate the large scale of source and sink couples possible in solute mass transfer.  相似文献   
77.
This paper focuses on the rôle of accumulation and cloudiness changes in the response of the Greenland ice sheet to global warming. Changes in accumulation or cloudiness were often neglected, or coupled to temperature changes. We used model output on temperature, precipitation and cloudiness from a GCM (ECHAM4 T106). The GCM output was used to drive the Greenland model that exists of a vertically averaged ice flow model, coupled to a 1D surface energy balance model that calculates the ablation. Variables are temperature, accumulation and cloudiness. Sensitivity experiments with this model show that changes in accumulation are very important for the ice sheet mass balance, whereas cloudiness is of secondary importance. If the Greenland model is forced by the GCM output, the Greenland model is found to contribute 70% less to sea level rise after 70 years than is indicated by the results presented in the IPCC report. This large discrepancy is mainly due to the fact that the enhanced ablation is strongly compensated by increased accumulation. Comparing the result obtained here with changes in mass balance derived directly from the same general circulation model, indicates a 20% larger contribution to sea level. This increase is due to changes in ice flow, and a different method for the ablation calculation.  相似文献   
78.
Ice-marginal debris-flow deposits (comparable to deposits elsewhere described as flow tills) are described from glacier-proximal sediments in an Alpine foreland area. Debris-flow deposits are characteristically interstratified with subaeric or subaquatie meltwater deposits, and occur in a wide variety of geomorpho-logical settings. The granulomctric composition of debris-flow deposits is more variable than that of subglacial tills. Within-flow variability may occur as a result of the formation of graded bedding, lateral as well as vertical. Clast fabrics show both random and preferred orientations; unequivocal interpretation of these is not possible. Debris-flow deposits are composed of material derived from various sources: sources from subglaeially-derived debris as well as from previously deposited tills and walerlain sediments can be demonstrated.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号