首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4198篇
  免费   988篇
  国内免费   1586篇
测绘学   714篇
大气科学   496篇
地球物理   568篇
地质学   3412篇
海洋学   584篇
天文学   59篇
综合类   333篇
自然地理   606篇
  2024年   53篇
  2023年   167篇
  2022年   271篇
  2021年   328篇
  2020年   269篇
  2019年   278篇
  2018年   275篇
  2017年   265篇
  2016年   273篇
  2015年   279篇
  2014年   275篇
  2013年   345篇
  2012年   358篇
  2011年   350篇
  2010年   354篇
  2009年   348篇
  2008年   333篇
  2007年   343篇
  2006年   315篇
  2005年   289篇
  2004年   219篇
  2003年   151篇
  2002年   181篇
  2001年   170篇
  2000年   148篇
  1999年   58篇
  1998年   10篇
  1997年   8篇
  1996年   7篇
  1995年   2篇
  1993年   6篇
  1992年   3篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1957年   1篇
  1954年   2篇
  1944年   2篇
  1942年   1篇
  1940年   1篇
排序方式: 共有6772条查询结果,搜索用时 31 毫秒
341.
为了能更好地理解激光雷达技术工作原理与三维信息采集全过程,规避现有激光雷达技术,尤其是机载激光雷达,在实践教学中受场地限制的不利条件,本文依托于中国矿业大学(北京)沙河校区的航空模拟平台,自主研发了一套基于单线激光雷达与行程测距仪集成的三维激光扫描装备,阐述了该装备集成的数学原理,设计了三维数据采集实践教学方法,并进行了三维数据采集的实践体验与数据质量评价。结果表明,该装备采集三维点云的精度优于99%,可为激光雷达技术的实践教学、创新训练及本科毕业设计等环节提供有效的硬件支撑,并可在仓储方量核算等工程应用方面进行推广。  相似文献   
342.
数据融合是解决高光谱卫星在时空分辨率等指标上受限的有效途径,探讨不同方法在GF-5高光谱数据上的融合效果,对GF-5高光谱数据的信息挖掘与推广应用有着重要意义。本文本着算法简单易用、适于推广的原则,采用GS(Gram-Schmidt)葛兰—施密特正交变换融合算法、GSA(GS Adaptive)自适应GS融合算法、CNMF(Coupled Non-negative Matrix Factorization)耦合非负矩阵分解融合算法、CRISP-W(Color Resolution Improvement Software Package with Wavelet transform)基于小波变换和CRISP-B(Color Resolution Improvement Software Package with Butterworth)基于巴特沃斯滤波器的分辨率提升融合算法、GLP(Generalized Laplacian Pyramid)广义拉普拉斯金字塔融合算法共6种融合方法,分别对BJ-2、GF-2、GF-1、GF-1C、GF-1D国产卫星多光谱数据与GF-5高光谱数据进行融合实验。通过目视分析、指标评价(相关系数、通用图像质量指标、峰值信噪比、光谱角、全局综合误差)、分类应用、时间成本4种方式对融合结果进行综合比较分析。结果表明,相融合的一组图像系列相同、空间分辨率相差越小,融合结果越好。CRISP-B、CRISP-W、GLP在提升空间分辨率、光谱保真度方面能达到较好的平衡,空间重建方面,GLP稍优且更稳定,CRISP-B、CRISP-W则在光谱信息保持方面稳定性更强且效果更好。数据源会对融合方法产生一定的影响,在光谱特征信息提取、分析等对光谱保真度要求高的工作中,GLP更适合同源数据(如GF-5与GF-1/1C/1D/2)融合,而在多源数据间(如GF-5与BJ-2)进行融合时,则优先选择CRISP-W。CNMF存在一定程度的色彩畸变,且运行时间较长。GSA、GS融合效果最差,其中,GSA不论是光谱保持能力还是空间分辨率提升能力均较GS更稳定。在小样本高光谱图像分类应用中,CRISP-B融合结果分类效果稳定,分类精度较高。GSA融合结果空间细节丰富,虽光谱失真较为严重,但同时增大了地物光谱分离度,仍适用于准确勾勒建筑物、道路等地物。本研究为GF-5高光谱数据与其他国产卫星多光谱数据融合方法的选择提供参考,有助于高分五号高光谱数据的应用与推广。  相似文献   
343.
在西藏措勤打加错地区新发现上三叠统江让组,其为一套海相碎屑岩及碳酸盐岩沉积建造,岩性主要为不等厚层状石英质砾岩、深灰色薄层状—块状生物碎屑微晶灰岩、含砂粉砂质微晶灰岩、含石英砾质生物碎屑灰岩、砂屑灰岩夹钙质细砂岩,产珊瑚Distichophyllia sp.,Volzeia sp.,Montlivaltia sp.,M.cf.xainzaensis、海绵:Hartmanina sp.和双壳类Xenocardita?sp.,时代为晚三叠世卡尼期-诺利期,与下二叠统昂杰组呈角度不整合接触。江让组在该地区的发现,完善了冈底斯西部三叠纪的地层系统,为研究印支运动对冈底斯西部的影响和古特提斯洋的演化提供了依据。  相似文献   
344.
为了揭示地下水由江汉平原周缘向中心径流过程中的水质演化和复杂的水文地球化学作用,以江汉平原西部地区为例,通过数理统计、水化学、同位素地球化学、离子比值关系等方法,开展了江汉平原西部边缘地带浅层孔隙地下水的水文地球化学特征研究。结果表明: 平原区孔隙水以HCO3-Ca·Mg型为主,丘岗区(丘陵和岗地)主要是HCO3-Ca·Mg型,少量为HCO3·SO4-Ca·Mg型,还出现了HCO3·NO3-Ca·Mg型水,总溶解固体(total dissolved solids,TDS)升高主要是由于碳酸盐岩的溶解; 浅层孔隙水均来源于大气降水,蒸发作用对该地区孔隙水的影响较小; 方解石、白云石和石膏的溶解主导研究区的水文地球化学过程,也是孔隙水中Ca2+、Mg2+的主要来源,Na+和K+的主要来源是阳离子交换吸附。  相似文献   
345.
赣南白面石铀矿田成因再认识   总被引:1,自引:0,他引:1  
赣南白面石铀矿田经上世纪60~80年代勘查,发现和探明了白面石、龙坑、双坑、马荠塘4个铀矿床和黄泥湖铀矿点,成为中国重要的铀资源基地。该矿田产于EW向南岭铀成矿带东段的白面石沉积-火山盆地内。该盆地的基底为印支期白面石花岗岩体;盖层为中侏罗统菖蒲组。盖层的底部为第一层砂岩,其上由基性-酸性双峰式火山岩组合与5层碎屑岩夹层组成。铀矿主要赋存在盖层底部的第一层砂岩中,其次是产在第一层玄武岩与第一层砂岩的接触带,有少量产在基底花岗岩顶部的风化壳中。关于该铀矿田的成因,有砂岩型沉积说、同生沉积后生富集说、成岩成矿热液叠加说、岩浆热液说,等等。为了厘定矿床成因类型,以确立今后的找矿方向,笔者对该矿田的资料进行了重新整理,应用Minesight软件选择典型的白面石铀矿床建立了三维地质模型,并收集了最新的同位素定年和岩石地球化学分析资料。研究表明,白面石铀矿田存在2次成矿(160~156 Ma和99~86 Ma),其主成矿作用与第一层玄武岩的覆盖,在空间上相伴(铀矿体主要赋存于第一层砂岩及其与玄武岩的接触带)、时间上相近(成矿时间为160~156 Ma,玄武岩成岩时间为173 Ma)、成生上相关(矿化具有明显的中-低温热液蚀变),为火山热盖成因类型,后期又有大量脉体活动,在岩脉两侧的砂岩层内又有热液型铀矿化叠加,从而形成了火山热盖及热液叠加的复成因矿床。该矿田的成矿条件是:富铀的基底,砂岩的沉积,洼沟的地形,岩浆的热盖,脉岩的入侵。  相似文献   
346.
红牛-红山矿床位于西南三江成矿带的中甸岛弧,是形成于晚燕山期的矽卡岩型铜矿床。矿区与成矿作用密切相关的石英二长斑岩中角闪石和黑云母斑晶的出现以及较高的含F量(分别为1.49%和2.62%),表明其岩浆为富H2O富挥发分熔体;石英斑晶具有港湾状、浑圆状的溶蚀表面和钾长石细晶外壳,并且显示了典型的骸晶状结构指示了其岩浆经历了快速上升侵位过程和岩浆热液的自交代作用;钻孔中岩浆热液角砾岩和大量石英细脉的出现暗示了岩浆在快速上侵过程中发生了隐爆作用,形成并出溶了含有大量F、Cl等组分的高盐度超临界流体。矽卡岩阶段石榴子石和透辉石具有明显的三个期次:早期细粒的钙铝榴石(And22-57)和角岩中的透辉石(Hd7-27)形成于少量高温气液岩浆流体与围岩的扩散交代作用;中期粗粒的钙铁榴石(And75-98)和次透辉石-钙铁辉石(Hd10-99)形成于大量高温、低氧逸度的岩浆流体与围岩的渗滤交代作用;晚期的钙铝榴石脉(And14-60)和钙铁辉石脉(Hd31-58)形成于低温、高氧逸度的早期交代残留溶液。矽卡岩矿物的生成,使碳酸盐围岩丢失CO2,矿物体积减少,孔隙度和渗透性增加,为成矿提供了条件。退化变质阶段的透闪石、阳起石、绿帘石、绿泥石等交代早期矽卡岩矿物,消耗了成矿流体中大量的CO2和H2O,生成含水矿物以及石英、方解石,使围岩裂隙愈合,孔隙流体压力增加,导致成矿流体沸腾,形成大量黄铜矿、磁黄铁矿、黄铁矿、辉钼矿化。石英-硫化物阶段,由于成矿流体超压→流体沸腾,裂隙生成→减压排泄,裂隙愈合→流体超压的循环,在此过程中围岩经历了多次破裂和裂隙的愈合,直至整个成矿体系完全开放,并与大气水发生混合,使成矿流体中剩余金属最终沉淀。  相似文献   
347.
秦岭山阳-柞水地区广泛出露燕山期中酸性花岗(斑)岩体,并有大量与其相关的斑岩-矽卡岩型Cu-Mo-Fe、Cu-AuFe矿化。LA-ICP-MS锆石U-Pb测年结果表明,与矿化密切相关的斑岩体形成于144.6~141.5Ma。岩石地球化学分析结果表明,这些花岗(斑)岩体SiO2含量为55.73%~67.80%,K2O含量为2.52%~6.40%,Na2O含量为1.94%~5.19%,Al2O3含量为14.61%~16.10%,FeOT含量为2.1%~9.0%,MgO含量为1.32%~5.52%,主体显高钾钙碱性准铝质特征。A/CNK1.1,P2O5与SiO2负相关,Mg#平均为49,含有角闪石、黑云母、榍石、磁铁矿等矿物,属I型花岗岩类;稀土元素分异明显,无明显Eu异常;富集K、Rb、Sr、Ba等大离子亲石元素,Nb、Ta、Ti、P和Hf等高场强元素亏损,属后碰撞型花岗岩。岩体的锆石εHf(t)为-4.5~+1.78,平均为-0.87,表明其岩浆源区为地壳物质的熔融岩浆与幔源岩浆的混合,且以地壳熔融成份为主;Hf同位素二阶段模式年龄(t DM2)为1479~1084Ma,表明其壳源源区物质可能形成于中晚元古代(1.4~1.0Ga)。  相似文献   
348.
对西藏西部日土县城以南-拉梅拉山口一带的花岗岩体开展了详细的岩相学、岩石地球化学和锆石U-Pb年代学及Hf同位素研究。所有样品铝饱和指数A/CNK集中在0.76~1.0之间,为准铝质类型。CIPW标准矿物组合为Q+Or+Ab+An+Di(或C)+Hy。在稀土元素配分图中呈现出右倾缓倾斜型的特征,轻稀土元素富集并出现较强的分馏作用,重稀土元素无分馏-轻微分馏。δEu在0.56~0.99范围之间,属于铕亏损型。大离子亲石元素出现分化,富集Rb、Pb、Th而亏损K、Ba,高场强元素Nb、Ta、Ti等明显亏损。获得钾长花岗岩、二长花岗岩及花岗闪长岩中岩浆结晶锆石的LA-ICP-MS U-Pb年龄分别为:79.4±0.4Ma、 81.0±0.5Ma和81.3±0.5Ma,结合锆石稀土元素和岩浆振荡环带特征及Th/U比值,上述年龄结果可代表岩石的结晶年龄,表明该套岩体为晚白垩世侵位的大型岩基。两件样品的锆石均具有正的Hf同位素初始比值εHft),两阶段Hf模式年龄(tDM2)分别介于547.5~658.0Ma、523.4~710.2Ma之间。分析认为该套岩体的物质来源应该为富角闪石的下地壳,可能为幔源岩浆首先侵入到地壳基底岩石中形成新生地壳,然后在温度约为700~800℃之间、压力<8kbar且富含流体的影响下,这种既有新生地壳又有古老基底地壳构成的混合地壳发生部分熔融而形成。这一结论与野外宏观露头上岩体中大量发育暗色微粒包体等直接岩石学证据相佐证。结合区域构造演化及岩体所处的大地构造位置,该套花岗岩体应该形成于洋壳闭合时的碰撞造山过程,其形成与侵位与北侧班公湖-怒江结合带的构造演化有成因上的联系,是班公湖-怒江特提斯洋向南的俯冲碰撞的产物。  相似文献   
349.
汶川地震断裂带科学钻探项目4号孔(WFSD-4)地层极其复杂,钻探施工难度极大,对钻井液技术要求较高,据此优选钾石灰聚磺钻井液体系为该孔的钻井液主体系。介绍了钻井液技术在各开次的使用维护情况,同时还详细介绍了该孔中的特殊工艺钻井液技术及复杂情况下钻井液应对措施等。  相似文献   
350.
哈勒尕提-木祖克铁铜铅锌矿床是近年来在新疆西天山博罗科努成矿带内发现的一处典型的矽卡岩型铜多金属矿床,目前为中型规模,有达到大型矿床的潜力。矿体赋存于大瓦布拉克岩体与上奥陶统呼独克达坂组(O3h)大理岩、大理岩化灰岩的接触带。成矿受岩浆岩、地层岩性和接触带构造"三位一体"联合控制。大瓦布拉克岩体主要岩性为二长花岗岩和花岗闪长岩,岩石地球化学显示高硅、准铝、低镁、富碱、富钾,为I型花岗岩,富集大离子亲石元素,相对亏损高场强元素,具俯冲带岩浆岩的地球化学特点。呼独克达坂组(O3h)碳酸盐岩地球化学性质活泼且富含铜、锌,有利于含矿热液交代成矿,是区域找矿的优势层位。接触带构造既是成矿地球化学障,又是良好的成矿热液运移通道,直接控制着矿体的产出。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号