Summary Radar reflectivity from hydrometeors is used for the estimation of the precipitation rate at ground level. If the vertical reflectivity profile is taken into account, the estimate can be improved considerably. In the first part of the article some theoretical explanations are given for the two most pronounced characteristic of the vertical radar reflectivity profile from clouds. In general, the observed values decrease with height in the upper part of the radar echo due to the growth of precipitation particles by collision and coalescence. The effect of the bright band, especially in more stratiform types of precipitation, adds a significant strong peak to the profile, at the approximate height of the 0 °C isotherm. These explanations, although being simplified, also provide a quantitative explanation of the two characteristics mentioned previously. Averaged seasonal characteristics of vertical profiles in Slovenia are used as the climatological basis for the construction of an idealised profile for correcting the precipitation estimate. For individual cases, and also after averaging, a maximum in the profiles can clearly be detected. This maximum is much sharper if the profiles are normalised. When looking at time changes, it is shown that most of the changes in radar reflectivity, on average, occur during a roughly 6-hour time-lag between the two measurements. With greater time-lags, the differences are smaller on average. This is caused by the local natural evolution of the precipitation field and indicates that a 6-hour to 12-hour accumulating and averaging of data could diminish much of the error due to the time variation in radar estimated precipitation.With 5 Figures 相似文献
The Southeast Basin of France is the thickest onshore French sedimentary basin which contains locally as much as 10 km of Mesozoic-Cenozoic sediment. Basin development occurred in several stages between late Carboniferous and late Cretaceous times. Partial tectonic inversion took place during two compressive events, the so-called ‘Pyrenean’ and ‘Alpine’ phases of late Cretaceous-early Tertiary and late Tertiary ages respectively. They are separated by an intervening stretching event of Oligocene age, which further south resulted in the opening of the western Mediterranean oceanic basin. As a result of this complex tectonic history, structural traps were difficult to image on the seismic data shot during the first phase of exploration prior to 1980. Oil and gas natural seeps, and shows in several wells, indicate that some petroleum systems are, or have been active, at least in some places.The present erosional western margin of the basin is more or less superimposed on the initial Triassic-Jurassic margin. Margin subsidence and Tertiary inversion are discussed using regional sections on which the polyphase history of the entire basin is well shown. These sections are located on three major segments where the Mesozoic margin is either partly preserved (Ardèche), or has been partly inverted in late Tertiary times (Vercors-Chartreuse), or has been completely inverted in early Tertiary times (Corbières-eastern Pyrenees). 1-D ‘Genex’ basin modelling on the Ardèche segment, and 2-D ‘Thrustpack’ structural-maturity modelling in the Vercors-Chartreuse segment are used to further assess the remaining petroleum plays. 相似文献
Summary This paper determines the characteristic air mass types over the Carpathian Basin for the winter (December, January, and February)
and summer (June, July and August) months dependant on levels of the main air pollutants. Based on the ECMWF data set, daily
sea-level pressure fields analysed at 00 UTC were prepared for each air mass type (cluster) in order to relate sea-level pressure
patterns with the level of air pollutants in Szeged. The data comprise daily values of twelve meteorological and eight pollutant
parameters for the period 1997–2001. Objective definition of the characteristic air mass types is achieved by using the methods
of Factor Analysis and Cluster Analysis. According to the results, during the winter months five air mass types (clusters)
were detected based on higher concentrations of primary pollutants that occur with high irradiance and low wind speed. This
is the case when an anticyclone is found over the Carpathian Basin and over the region south of Hungary, influencing the weather
of the country. Low levels of pollutants occur when zonal currents exert influence over Hungary. During the summer months
anticyclones and anticyclone ridge situations are found over the Carpathian Basin. (During the prevalence of anticyclone ridge
situations, the Carpathian Basin is found at the edge of a high pressure centre.) As a result of high irradiance and very
low NO levels, secondary pollutants are highly enriched. 相似文献
Variables related to urban park awareness are identified and methods for relaxing assumptions of perfect information in park use models are discussed. Park awareness is related to park characteristics (age and degree of development of the park), population characteristics (race, age, length of residence, recreation participation), and distance. Park attributes are stronger predictors of both park awareness and use than is distance. These findings parallel similar research on the cognitive aspects of shopping decisions. 相似文献
Identification of the distinctive circulation patterns of storminess on the Atlantic margin of Europe forms the main objective of this study; dealing with storm frequency, intensity and tracking. The climatology of the extratropical cyclones that affect this region has been examined for the period 1940–1998. Coastal meteorological data from Ireland to Spain have been linked to the cyclone history for the North Atlantic in the analysis of storm records for European coasts. The study examines the evolution in the occurrence of storms since the 1940s and also their relationship with the North Atlantic Oscillation (NAO). Results indicate a seasonal shift in the wind climate, with regionally more severe winters and calmer summers established. This pattern appears to be linked to a northward displacement in the main North Atlantic cyclone track.
An experiment with the ECHAM4 A-GCM at high resolution (T106) has also been used to model the effect of a greenhouse gases induced warming climate on the climatology of coastal storms in the region. The experiment consists of (1), a 30-year control time-slice representing present-day equivalent CO2 concentrations and (2), a 30-year perturbed period corresponding to a time when the radiative forcing has doubled in terms of equivalent CO2 concentrations. The boundary conditions have been obtained from an atmosphere-ocean coupled OA-GCM simulation at low horizontal resolution. An algorithm was developed to allow the identification of individual cyclone movements in selected coastal zones. For most of the northern part of the study region, covering Ireland and Scotland, results describe the establishment by ca. 2060 of a tendency for fewer but more intense storms.
The impacts of these changes in storminess for the vulnerability of European Atlantic coasts are considered. For low-lying, exposed and ‘soft’ sedimentary coasts, as in Ireland, these changes in storminess are likely to result in significant localised increases in coastal erosion. 相似文献
The spatial size distribution of grunts and snappers have previously indicated the separation of juveniles in nursery habitats from the adults on the coral reef. This implies life cycle migrations from nursery habitats (such as seagrass beds and mangroves) to the coral reef. If diet shifts are related to such migrations, then the diets of these fish must change before or around the fish size at which such migrations take place. A wide size range of juveniles of two grunt species (Haemulon sciurus and Haemulon flavolineatum) and of two snapper species (Lutjanus apodus and Ocyurus chrysurus) were caught in seagrass beds and mangroves, and their gut contents identified and quantified. Regression analysis between fish size and dietary importance of small crustaceans showed a negative relationship in all four species. Positive relations were found for H. sciurus, L. apodus and O. chrysurus between fish length and the dietary importance of decapods, and for L. apodusand O. chrysurus between fish length and prey fish importance. Critical changes in the fish diets with fish size were examined by application of a Canonical Correspondence Analysis (CCA). The CCA yielded three clusters of size-classes of fishes with similar diets, and application of a Mantel test showed that each of these clusters had significantly different diets, and that each cluster diet was significantly specialised. The size at which a fish species ‘switched’ from one cluster to another was compared with size-at-maturity data and with the typical size at which these species migrate from the nursery habitats to the coral reef. H. sciurus and H. flavolineatum may be prompted to migrate from the nursery habitats to coral reef habitats because of dietary changes, or because of the development of the gonads. For L. apodus and O. chrysurus, a dietary changeover forms a more likely explanation for nursery-to-reef migrations than does sexual maturation because these species reach maturity at sizes much larger than the maximum size of individuals found in nursery habitats. Although other factors may theoretically initiate or promote the migration patterns, the results of this study indicate that ontogenetic dietary changes may crucially influence the nursery-to-coral reef migrations of these reef fish species. 相似文献
Sand waves are large bed waves on the seabed, being a few metres high and lying hundreds of metres apart. In some cases, these sand waves occur in navigation channels. If these sand waves reduce the water depth to an unacceptable level and hinder navigation, they need to be dredged. It has been observed in the Bisanseto Channel in Japan that the sand waves tend to regain their shape after dredging. In this paper, we address modelling of this regeneration of sand waves, aiming to predict this process. For this purpose, we combine a very simple, yet effective, amplitude-evolution model based on the Landau equation, with measurements in the Bisanseto Channel. The model parameters are tuned to the measured data using a genetic algorithm, a stochastic optimization routine. The results are good. The tuned model accurately reproduces the measured growth of the sand waves. The differences between the measured weave heights and the model results are smaller than the measurement noise. Furthermore, the resulting parameters are surprisingly consistent, given the large variations in the sediment characteristics, the water depth and the flow field. This approach was tested on its predictive capacity using a synthetic test case. The model was tuned based on constructed predredging data and the amplitude evolution as measured for over 2 years. After tuning, the predictions were accurate for about 10 years. Thus, it is shown that the approach could be a useful tool in the optimization of dredging strategies in case of dredging of sand waves. 相似文献
The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114?×?104 m3/year in 2017 to 11,875?×?104 m3/year in 2021, and to 17,039?×?104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277?×?104 m3/year in 2017 to 1857?×?104 m3/year in 2021, and to 510?×?104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem. 相似文献
Refraction data taken from ocean bottom seismograph recordings in the western Arafura Sea indicate a continental‐type structure for the region. This structure is characterised by a thin column (2 km) of sediments, with velocities ranging from about to 2 to 4 km s‐1, overlying an essentially two layer crust. The compressional wave velocities in the upper and lower crust are 5.97 and 6.52 km s‐1, respectively, with the boundary between the layers at a depth of 11 km. Very weak mantle‐refracted arrivals with a velocity of about 8.0 km s‐1 were recorded. Large‐amplitude, later arrivals, beginning at distances near 100 and 150 km, have been interpreted to be part of the retrograde branches from the 8.0 and 7.33 km s‐1 layers, respectively. Model studies indicate that a small positive velocity gradient is required between 17 and 30 km, and that the Moho is at a depth of 34 km. A third set of large amplitude, later arrivals starting at a distance near 250 km has been interpreted as most probably multiple refraction‐reflection arrivals from the 5.97 and 6.52 km s‐1 layers. Correlation of this structure with the stratigraphic logs from exploratory oil wells in the Arafura Sea using layer velocities indicates that rocks younger than Jurassic appear to thin towards the east. 相似文献