全文获取类型
收费全文 | 136475篇 |
免费 | 3220篇 |
国内免费 | 2191篇 |
专业分类
测绘学 | 4125篇 |
大气科学 | 10164篇 |
地球物理 | 27273篇 |
地质学 | 48894篇 |
海洋学 | 12367篇 |
天文学 | 30123篇 |
综合类 | 960篇 |
自然地理 | 7980篇 |
出版年
2022年 | 976篇 |
2021年 | 1663篇 |
2020年 | 1718篇 |
2019年 | 2003篇 |
2018年 | 3713篇 |
2017年 | 3452篇 |
2016年 | 4210篇 |
2015年 | 2399篇 |
2014年 | 4101篇 |
2013年 | 7016篇 |
2012年 | 4474篇 |
2011年 | 5683篇 |
2010年 | 5141篇 |
2009年 | 6440篇 |
2008年 | 5692篇 |
2007年 | 5787篇 |
2006年 | 5382篇 |
2005年 | 4099篇 |
2004年 | 4029篇 |
2003年 | 3760篇 |
2002年 | 3849篇 |
2001年 | 3391篇 |
2000年 | 3215篇 |
1999年 | 2685篇 |
1998年 | 2630篇 |
1997年 | 2520篇 |
1996年 | 2192篇 |
1995年 | 2143篇 |
1994年 | 1891篇 |
1993年 | 1685篇 |
1992年 | 1558篇 |
1991年 | 1606篇 |
1990年 | 1575篇 |
1989年 | 1455篇 |
1988年 | 1342篇 |
1987年 | 1568篇 |
1986年 | 1380篇 |
1985年 | 1646篇 |
1984年 | 1887篇 |
1983年 | 1743篇 |
1982年 | 1686篇 |
1981年 | 1514篇 |
1980年 | 1379篇 |
1979年 | 1310篇 |
1978年 | 1288篇 |
1977年 | 1138篇 |
1976年 | 1081篇 |
1975年 | 1081篇 |
1974年 | 1057篇 |
1973年 | 1147篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
琼西抱板群变质沉积岩地球化学研究 总被引:15,自引:1,他引:15
琼西中元古代抱板群变质沉积岩可分为白云母石英片岩组和石英二云母片岩组,其原岩为砂岩质泥质沉积岩夹火山物质。白云母石英片岩组和石英二云母片岩组在地球化学成分上的差异是原始沉积化学分异作用的结果。对主元素、微量元素(含稀土元素)及Sm-Nd同位素的综合研究表明,海南岛存在古元古代或更早的古老基底,抱板群变质沉积岩一部分来源于成熟度较低的古老地壳物质,另一部分来源于含地幔火山物质较多的初生地壳,或与研究区大规模造山运动、构造-岩浆活动所伴生的地幔物质加入有关。初步研究显示,琼西抱板群变质沉积岩可能是造山带岛弧和活动大陆边缘区(扩张弧后或弧间盆地)大地构造环境下的沉积产物。 相似文献
962.
963.
Relocation of intermediate and deep earthquakes of Tyrrhenian Sea area through joint hypocenter determination for the period 1962–1979, has allowed a more detailed definition of the geometry of this peculiar Benioff zone. Earthquakes dip along a quasi-vertical plane to 250 km depth; there is a 50° dip in the 250–340 km depth range, and a low dip angle to 480 km depth. The structure sketched from the hypocenters is almost continuous, but most energy has been released in the 230–340 km depth interval. An evaluation of fault plane solutions of intermediate earthquakes in this area indicates predominance of down-dip compressions in the central part of the slab. At the border, strike-slip motion occurs independent of depth. Some earthquakes that occurred at intermediate depth (less than 100 km) along the Ionian margin of Calabria show predominance of reverse faulting, with the P-axis oriented SE-NW. However, shallow earthquakes in the Calabria-Sicily region indicate a more complex motion, with predominance of normal faulting. A possible interpretation of these features according to the available geological history, which involves subduction of continental lithosphere, is discussed. 相似文献
964.
This field study was a combined chemical and biological investigation of the relative rates of weathering and biodegradation of oil spilled in sediments and testing the influence of a bioremediation protocol. The aim of the chemistry work presented here was to determine whether the bioremediation protocol affected the rate of penetration, dissipation or long-term retention of a medium range crude oil (Gippsland) and a Bunker C oil stranded in tropical Rhizophora sp. mangrove and Halosarcia sp. salt marsh environments. Permission for the planned oil spills was granted in the Port Authority area of Gladstone, Queensland (Australia). Sediment cores from three replicate plots of each treatment for mangroves and four replicate plots for the salt marsh (oil only and oil plus bioremediation) were analysed for total hydrocarbons (THC) and for individual alkane markers using gas chromatography with flame ionization detection (GC–FID). Sediments were collected at day 2, then 1, 2, 5 or 6 and 12 or 13 months post-spill for mangroves and day 2, 1, 3 and 9 months post-spill for salt marshes. Over this time, hydrocarbons in all of the oil treated plots decreased exponentially. There was no statistical difference in initial oil concentrations, penetration of oil to depth, or in the rates of oil dissipation between untreated oil and bioremediated oil in the mangrove plots. The salt marsh plots treated with the waxy Gippsland oil showed a faster rate of biodegradation of the oil in the bioremediated plots. In this case only, the degradation rate significantly impacted the mass balance of remaining oil. The Bunker C oil contained only minor amounts of highly degradable n-alkanes and bioremediation did not significantly impact its rate of loss in the salt marsh sediments. At the end of each experiment, there were still n-alkanes visible in the gas chromatograms of residual oils. Thus it was concluded that there was unlikely to be any change in the stable internal biomarkers of the oils over this time period. The predominant removal processes in both habitats were evaporation and dissolution, with a lag-phase of 1–2 months before the start of microbial degradation. 相似文献
965.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
966.
A seismicity map of that part of the Pakistan-Afghanistan region lying between the latitudes 28° to 38°N and longitudes 66° to 75°E is given using all available data for the period 1890–1970. The earthquakes of magnitude 4.5 and above were considered in the preparation of this map. On the basis of this map, it is observed that the seismicity pattern over the well-known Hindukush region is quite complex. Two prominent, mutually orthogonal, seismicity lineaments, namely the northvestern and the north-eastern trends, characterize the Hindukush area. The northwestern trend appears to extend from the Main Boundary Fault of the Kashmir Himalaya on the southeast to the plains of the Amu Darya in Uzbekistan on the northwest beyond the Hindukush. The Sulaiman and Kirthar ranges of Pakistan are well-defined zones of intermontane seismicity exhibiting north-south alignment.Thirty-two new focal-mechanism solutions for the above-mentioned region have been determined. These, together with the results obtained by earlier workers, suggest the pre-dominance of strike-slip faulting in the area. The Hazara Mountains, the Sulaiman wrench zone and the Kirthar wrench zone, as well as the supposed extension of the Murray ridge up to the Karachi coast, appear to be mostly undergoing strike-slip movements.In the Hindukush region, thrust and strike-slip faulting are found to be equally prevalent. Almost all the thrust-type mechanisms belonging to the Hindukush area have both the nodal planes in the NW-SE direction for shallow as well as intermediate depth earthquakes. The dip of P-axes for the events indicating thrust type mechanisms rarely exceeds 35°. The direction of the seismic slip vector obtained through thrust type solutions is always directed towards the northeast. The epicentral pattern together with these results suggest a deep-seated fault zone paralleling the northwesterly seismic zone underneath the Hindukush. This NW-lineament has a preference for thrust faulting, and it appears to extend from the vicinity of the Main Boundary Fault of the Kashmir Himalaya on the southeast of Uzbekistan on the northwest through Hindukush. Almost orthogonal to this NW-seismic zone, there is a NE-seismic lineament in which there is a preference for strike-slip faulting.The above results are discussed from the point of view of convergence of the Indian and Eurasian plates in the light of plate tectonics theory. 相似文献
967.
Common variogram models, such as spherical or exponential functions, increase monotonically with increasing lag distance. On the other hand, a hole-effect variogram typically exhibits sinusoidal waves that form peaks and troughs, thereby conveying the cyclicity of the underlying phenomenon. In order to incorporate this cyclicity into a stochastic simulation, hole effects in the experimental variogram must be fitted appropriately. In this paper, we recommend use of several multiplicative-composite variogram models to fit hole-effect experimental variograms. These consist of a cosine function to provide wavelength and phase of cyclicity, multiplied by a monotonic model (e.g., spherical) to attenuate amplitudes of the cyclical peaks and troughs. These composite models can successfully fit experimental lithology-indicator variograms that contain a range of cyclicities, although experimental variograms with poor cyclicity require special considerations. 相似文献
968.
969.
Thermal demagnetization of red and drab sandstones from the St. Bees Sandstone shows a wide range of directional stability. After the removal of a metastable secondary magnetization at temperatures up to 300°C red sandstones may show stable or unstable magnetization. Experiments indicate that both the stable and unstable magnetization is carried by coarse haematite particles (specularite).Drab sandstones, which have been subject to reduction and dissolution of haematite are generally unstable but specimens with a stable NRM occur and this must be carried by specularite because the pigment has been removed from these specimens.The stable magnetization is believed to have developed during deposition and early diagenesis by the oxidation of detrital iron oxides. Pole positions correspond to known Triassic poles and there are abundant normal and reversed zones typical of the Lower Triassic.The unstable magnetization of the red sandstones is apparently due to the development of authigenic overgrowths of haematite on the detrital specularites. This phase of authigenesis may have taken place over a long time, and after significant changes in the ambient geomagnetic field resulting in complex magnetizations in individual grains and hence whole rocks. 相似文献
970.