首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83002篇
  免费   1149篇
  国内免费   648篇
测绘学   2339篇
大气科学   6089篇
地球物理   16309篇
地质学   31390篇
海洋学   6643篇
天文学   17587篇
综合类   272篇
自然地理   4170篇
  2021年   429篇
  2020年   478篇
  2019年   561篇
  2018年   3904篇
  2017年   3635篇
  2016年   2964篇
  2015年   1025篇
  2014年   1486篇
  2013年   3020篇
  2012年   2611篇
  2011年   4657篇
  2010年   4260篇
  2009年   5031篇
  2008年   4240篇
  2007年   4738篇
  2006年   2366篇
  2005年   2320篇
  2004年   2205篇
  2003年   2162篇
  2002年   2023篇
  2001年   1586篇
  2000年   1525篇
  1999年   1347篇
  1998年   1322篇
  1997年   1333篇
  1996年   1092篇
  1995年   1063篇
  1994年   996篇
  1993年   891篇
  1992年   806篇
  1991年   761篇
  1990年   787篇
  1989年   731篇
  1988年   729篇
  1987年   828篇
  1986年   737篇
  1985年   940篇
  1984年   1091篇
  1983年   1023篇
  1982年   932篇
  1981年   865篇
  1980年   832篇
  1979年   772篇
  1978年   788篇
  1977年   675篇
  1976年   676篇
  1975年   653篇
  1974年   655篇
  1973年   690篇
  1972年   466篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
621.
The described fusulinids of the Moscovian Stage are found in the Asad-Abad section of the Sanandaj-Sirjan tectonic zone of Iran. Five successive fusulinid assemblages are distinguished. Three lower of them belong to the Kashirian Substage, the other two to the Podolskian Substage. The section studied is correlated with most complete sections of the Moscovian Stage in the western Tethys. Two new species Fusulinella (Moellerites) pygmea and Putrella primaris are identified; in addition to nominative taxon, the latter includes new subspecies P. primaris compacta.  相似文献   
622.
The Ruiga differentiated mafic-ultramafic intrusion in the northwestern part of the Vetreny Belt paleorift was described for the first time based on geological, petrological, geochronological, and geochemical data. The massif (20 km2 in exposed area) is a typical example of shallow-facies peridotite-gabbro-komatiite-basalt associations and consists of three zones up to 810 m in total thickness (from bottom to top): melanogab-bronorite, peridotite, and gabbro. In spite of pervasive greenschist metamorphism, the rocks contain locally preserved primary minerals: olivine (Fo 75–86), bronzite, augite of variable composition, labradorite, and Cr-spinels. A mineral Sm-Nd isochron on olivine melanogabbronorite from the Ruiga Massif defines an age of 2.39 ± 0.05 Ga, while komatiitic basalts of the Vetreny Belt Formation were dated at 2.40–2.41 Ga (Puchtel et al., 1997). The rocks of the Ruiga intrusion and lava flows of Mt. Golets have similar major, rare-earth, and trace element composition, which suggests their derivation from a single deep-seated source. Their parent magma was presumably a high-Mg komatiitic basalt. In transitional crustal chambers, its composition was modified by olivine-controlled fractionation and crustal contamination, with the most contaminated first portions of the ejected melt. In terms of geology and geochemistry, the considered magmatic rocks of the Vetreny Belt are comparable with the Raglan Ni-PGE komatiite gabbro-peridotite complex in Canada (Naldrett, 2003).  相似文献   
623.
The paper is devoted to the conditions under which opacite rims developed around hornblende grains in andesite of the catastrophic eruption (March 30, 1956) of Bezymyannyi volcano, Kamchatka. The opacite rims were produced by a bimetasomatic reaction between hornblende and melt with the development of the following zoning: hornblende → Px + Pl + Ti-MagPx + PlPx → melt. Biometasomatic reaction was accompanied by the active removal of CaO from the rim, addition of SiO2, and more complicated behavior of other components. The hornblende also shows reactions of its volumetric decomposition under near-isochemical conditions. The opacite rims developed under isobaric conditions, at a pressure of approximately 6 kbar. The main reason for the instability of the hornblende was the heating of the magma chamber from 890 to 1005°C due to new hot magma portion injection. The time interval between the injection and the start of eruption was estimated from the thickness of the opacite rims and did not exceed 37 days. Hence, the March 30, 1956, eruption was not related to the volcanic activity in November of 1955 but to the injection of a fresh magma portion in February–March of 1956.  相似文献   
624.
Summary  This paper describes and discusses the adequacy of Weibull statistical analysis to analyse the bending strength of granite. The experimental results show that strength variability is related with a specific origin of failure. This conclusion is based on analysing the influence of the surface condition (extrinsic defects) on the bending strength results treated by the Weibull statistics. The conclusions drawn from this study have been validated by analysing the results of the critical flaw dimension estimated by applying the linear elastic fracture mechanics (LEFM) formulae. Results obtained from fractographic examination also have been used to describe the location of the origin of the fracture and understand the distribution of defects; i.e., there is a unimodal distribution of defects (intrinsic defects), despite the fact that some outlier values are normally observed in the fractured surfaces. Correspndence: P. M. Amaral, Department of Materials Engineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal  相似文献   
625.
Melt inclusions were examined in phenocrysts in basalt, andesite, dacite, and rhyodacite from the Karymskii volcanic center in Kamchatka and dacite form Golovnina volcano in Kunashir Island, Kuriles. The inclusions were examined by homogenization and by analyzing glasses in more than 80 inclusions on an electron microscope and ion microprobe. The SiO2 concentrations in the melt inclusions in plagioclase phenocrysts from basalts from the Karymskii volcanic center vary from 47.4 to 57.1 wt %, these values for inclusions in plagioclase phenocrysts from andesites are 55.7–67.1 wt %, in plagioclase phenocrysts from the dacites and rhyodacites are 65.9–73.1 wt %, and those in quartz in the rhyodacites are 72.2–75.7 wt %. The SiO2 concentrations in melt inclusions in quartz from dacites from Golovnina volcano range from 70.2 to 77.0 wt %. The basaltic melts are characterized by usual concentrations of major components (wt %): TiO2 = 0.7–1.3, FeO = 6.8–11.4, MgO = 2.3–6.1, CaO = 6.7–10.8, and K2O = 0.4–1.7; but these rocks are notably enriched in Na2O (2.9–7.4 wt % at an average of 5.1 wt %, with the highest Na2O concentration detected in the most basic melts: SiO2 = 47.4–52.0 wt %. The concentrations of volatiles in the basic melts are 1.6 wt % for H2O, 0.14 wt % for S, 0.09 wt % for Cl, and 50 ppm for F. The andesite melts are characterized by high concentrations (wt %) of FeO (6.5 on average), CaO (5.2), and Cl (0.26) at usual concentrations of Na2O (4.5), K2O (2.1), and S (0.07). High water concentrations were determined in the dacite and rhyodacite melts: from 0.9 to 7.3 wt % (average of 15 analyses equals 4.5 wt %). The Cl concentration in these melts is 0.15 wt %, and those of F and S are 0.06 and 0.01 wt %, respectively. Melt inclusions in quartz from the dacites of Golovnina volcano are also rich in water: they contain from 5.0 to 6.7 wt % (average 5.6 wt %). The comparison of melt compositions from the Karymskii volcanic center and previously studied melts from Bezymyannyi and Shiveluch volcanoes revealed their significant differences. The former are more basic, are enriched in Ti, Fe, Mg, Ca, Na, and P but significantly depleted in K. The melts of the Karymskii volcanic center are most probably less differentiated than the melts of Bezymyannyi and Shiveluch volcanoes. The concentrations of water and 20 trace elements were measured in the glasses of 22 melt inclusions in plagioclase and quartz from our samples. Unusually high values were obtained for Li concentrations (along with high Na concentrations) in the basaltic melts from the Karymskii volcanic center: from 118 to 1750 ppm, whereas the dacite and rhyolite melts contain 25 ppm Li on average. The rhyolite melts of Golovnina volcano are much poorer in Li: 1.4 ppm on average. The melts of the Karymskii volcanic center are characterized by relative minima at Nb and Ti and maxima at B and K, as is typical of arc magmas.  相似文献   
626.
Summary  Left in place pillars of abandoned mines are subject to weathering (e.g action of water, bacteria) that degrades their mechanical strength and eventually leads to collapse. A simple weathering model is proposed, that is governed by two parameters: the rate of progression of weathered front and the rate of degradation of the compressive strength with time. Both plane strain and axisymmetric analyses are performed and closed form solutions of the variation with time of the bearing capacity of the pillar are given. Experimental data of the tests conducted on gypsum and anhydrite specimens attacked by water are presented. It is shown that in order to fit the experimental data a third parameter must be introduced. New closed form solutions are given and the data are used for estimating the time to failure of abandoned gypsum mines in Northern Italy. Authors’ address: Dr. Riccardo Castellanza, Research Assistant, Department of Structural Engineering, Milan University of Technology (Politecnico), Piazza Leonardo da Vinci 32, 20133 Milan, Italy  相似文献   
627.
628.
Serpentine soils derived from the weathering of ultramafic rocks and their metamorphic derivatives (serpentinites) are chemically prohibitive for vegetative growth. Evaluating how serpentine vegetation is able to persist under these chemical conditions is difficult to ascertain due to the numerous factors (climate, relief, time, water availability, etc.) controlling and affecting plant growth. Here, the uptake, incorporation, and distribution of a wide variety of elements into the biomass of serpentine vegetation has been investigated relative to vegetation growing on an adjacent chert-derived soil. Soil pH, electrical conductivity, organic C, total N, soil extractable elements, total soil elemental compositions and plant digestions in conjunction with spider diagrams are utilized to determine the chemical relationships of these soil and plant systems. Plant available Mg and Ca in serpentine soils exceed values assessed in chert soils. Magnesium is nearly 3 times more abundant than Ca in the serpentine soils; however, the serpentine soils are not Ca deficient with Ca concentrations as high as 2235 mg kg−1. Calcium to Mg ratios (Ca:Mg) in both serpentine and chert vegetation are greater than one in both below and above ground tissues. Soil and plant chemistry analyses support that Ca is not a limiting factor for plant growth and that serpentine vegetation is actively moderating Mg uptake as well as tolerating elevated concentrations of bioavailable Mg. Additionally, results demonstrate that serpentine vegetation suppresses the uptake of Fe, Cr, Ni, Mn and Co into its biomass. The suppressed uptake of these metals mainly occurs in the plants’ roots as evident by the comparatively lower metal concentrations present in above ground tissues (twigs, leaves and shoots). This research supports earlier studies that have suggested that ion uptake discrimination and ion suppression in the roots are major mechanisms for serpentine vegetation to tolerate the chemistry of serpentine soils.  相似文献   
629.
Geographic differentiation of conodontophorids between northern and southern latitudes commenced in the Triassic since the early Induan. Cosmopolitan long-lived genera of predominantly smooth morphotypes without sculpturing were characteristic of high-latitude basins of the Panboreal Superrealm. Since the early Olenekian until the Carnian inclusive, this superrealm consisted of the Siberian Realm that extended over Northeast Asia and the Canada-Svalbard Realm that included the Svalbard Archipelago and northern regions of Canada. Throughout the Triassic period, conodontophorids characteristic of the Tethys-Panthalassa Superrealm spanning the Tethys and low-latitude zones of the Pacific were highly endemic, very diverse in taxonomic aspect, having well-developed sculpturing and tempos of morphological transformations. Distinctions between the Early-Middle Triassic conodontophorids from northern and southern zones were not as great as afterward, and their impoverished assemblages from southern Tethyan basins were close in some respects to the Boreal ones. Their habitat basins of that time can be grouped into the Mediterranean-Pacific and India-Pakistan realms. Hence, the extent of geographic differentiation of conodontophorids was not constant and gradually grew, as their taxonomic diversity was reducing in northern basins but relatively increasing in southern ones. The Panboreal e Tethys-Panthalassa superrealms of conodontophorids, which are most clearly recognizable, are close to first-rank paleobiochores (superrealms) established earlier for ammonoids and bivalve mollusks. Main factor that controlled geographic differentiation of Triassic conodontophorids was climatic zoning. Initially lower diversity of southern Tethyan assemblages points probably to relatively cooler water regime in the peri-Gondwanan part of the Tethys. The established patterns in geographic distribution of conodontophorids characterize most likely the real trend of their differentiation and evolution, i.e., the distribution area contraction prior to complete extinction at the end of the Triassic  相似文献   
630.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号