首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77109篇
  免费   1258篇
  国内免费   604篇
测绘学   2112篇
大气科学   5346篇
地球物理   15715篇
地质学   26345篇
海洋学   6638篇
天文学   18637篇
综合类   200篇
自然地理   3978篇
  2021年   649篇
  2020年   741篇
  2019年   809篇
  2018年   1845篇
  2017年   1693篇
  2016年   2121篇
  2015年   1182篇
  2014年   2019篇
  2013年   3798篇
  2012年   2222篇
  2011年   2983篇
  2010年   2680篇
  2009年   3703篇
  2008年   3196篇
  2007年   3217篇
  2006年   2964篇
  2005年   2240篇
  2004年   2296篇
  2003年   2104篇
  2002年   2094篇
  2001年   1882篇
  2000年   1765篇
  1999年   1524篇
  1998年   1555篇
  1997年   1493篇
  1996年   1256篇
  1995年   1226篇
  1994年   1126篇
  1993年   987篇
  1992年   904篇
  1991年   917篇
  1990年   961篇
  1989年   897篇
  1988年   817篇
  1987年   983篇
  1986年   864篇
  1985年   1050篇
  1984年   1243篇
  1983年   1121篇
  1982年   1039篇
  1981年   1009篇
  1980年   871篇
  1979年   847篇
  1978年   856篇
  1977年   775篇
  1976年   718篇
  1975年   712篇
  1974年   668篇
  1973年   725篇
  1972年   480篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
411.
412.
The Palaeoproterozoic Lapland Granulite Belt is a seismically reflective and electrically conductive sequence of deep crustal (6–9 kbar) rocks in the northern Fennoscandian Shield. It is composed of garnet-sillimanite gneisses (khondalites) and pyroxene granulites (enderbites) which in certain thrust sheets form about 500 m thick interlayers. The structure was formed by the intrusion of intermediate to basic magmas into turbiditic sedimentary rocks under granulite facies metamorphism accompanied by shearing of the deep crust about 1.93–1.90 Gyr ago (Gal. Granulites were upthrust 1.90–1.87 Ga and the belt was divided by crustal scale duplexing into four structural units whose layered structure was preserved. The thrust structures are recognized by the repetition of lithological ensembles and by discordant structural patterns well distinguishable in airborne magnetic and electromagnetic data. Thrusting gave rise to clockwise pressure-temperature evolution of the belt. However, some basic rocks possibly record an isobaric cooling path. The low bulk resistivity of the belt (200–1000 Ωm) is caused by interconnected graphite and subordinate sulphides in shear zones. On the basis of carbon isotope ratios this graphite is derived mostly from sedimentary organic carbon. The seismic reflectivity of the belt may be caused by velocity and density differences between pyroxene granulites and khondalites, as well as by shear zones.  相似文献   
413.
Thinly stratified sedimentary deposits in a heterogeneous field were investigated to obtain basic physical data for the simulation of water flow. A procedure is described which translates a thinly stratified soil profile into a number of functional layers using functional hydrological properties. A functional layer is defined as a combination of one or more soil horizons and should (i) be recognizable during a soil survey using an auger and (ii) show significantly different functional hydrological properties when compared with another functional layer. This procedure gave three easily recognizable functional layers. Sets of hydrological characteristics of these three functional layers were obtained by physical measurements of the soil and by estimation, using textural data for classification into a standard Dutch series. The performance of several combinations of these sets was tested by comparing simulated and measured soil matric potentials for seven plots during one year. The best simulation results were obtained if measured soil hydraulic characteristics were used for relatively homogeneous functional layers and if the soil hydraulic characteristics were estimated at each location for the most heterogeneous layer.  相似文献   
414.
415.
Oil-weathering processes in ice-free subarctic and Arctic waters include spreading, evaporation, dissolution, dispersion of whole-oil droplets into the water column, photochemical oxidation, water-in-oil emulsification, microbial degradation, adsorption onto suspended particulate material, ingestion by organisms, sinking, and sedimentation. While many of these processes also are important factors in ice-covered waters, the various forms of sea ice (depending on the active state of ice growth, extent of coverage and/or decay) impart drastic, if not controlling, changes to the rates and relative importance of different oil-weathering mechanisms. Flow-through seawater wave-tank experiments in a cold room at −35°C and studies in the Chukchi Sea in late winter provide data on oil fate and effects for a variety of potential oil spill scenarios in the Arctic. Time-series chemical weathering data are presented for Prudhoe Bay crude oil released under and encapsulated in growing first-year columnar ice through spring breakup.  相似文献   
416.
I.IN~crIOXLocatedinthecoddlepatofTallmBasin,withanareaof33.76X104klnZ,theTaldirnakan~isinthehinterlandofEurasia.Blockedbythehighmountainsaround,vapourofoceancanhardlyreachthedesert.APartfromthis,asthedeSertisinthesinkingcompensationareaoftheascensionalaircurrentaamstheQinghal-XIZangPlateau,itSprecipitationisrareandtheevaporationcapacityisintensealltheyearround.Allthesecontributetotheformationsofthetypifydrydesertclimate.Theacidityindexofthedesertandthearoundregionisashighasmorethan50,w…  相似文献   
417.
418.
A new method of initial orbit determination   总被引:2,自引:0,他引:2  
Up to now we have been dealing with the construction of entirely analytical planetary theories such as VSOP82 (Bretagnon, 1982) and TOP82 (Simon, 1983). These theories take into account the whole of the Newtonian perturbations of nine point masses: the Sun, the Earth-Moon barycentre, the planets Mercury, Venus, Mars, Jupiter, Saturn, Uranus and Neptune. They also take into account perturbations due to some minor planets, to the action of the Moon and the relativistic effects. The perturbations of these last three types are in a very simple way under analytical form but they considerably increase the computations when introduced in the numerical integration programs.In the present paper we thus study a solution in which the Newtonian perturbations for the ten point masses are treated through numerical integration, the other perturbations being analytically added.  相似文献   
419.
In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona.  相似文献   
420.
Forward modeling of zero-offset data is performed in the frequency-space domain using a one-way extrapolation equation. The use of the frequency domain offers several advantages over conventional time domain methods. The greatest advantage of the frequency domain is that all time derivatives are evaluated exactly by a simple multiplication. Synthetic zero-offset sections are computed with a high degree of accuracy for arbitrary velocity and reflectivity structures. Examples are shown for realistic complicated models and compared with results from physical modeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号