In this age of modern biology, aquatic toxicological research has pursued mechanisms of action of toxicants. This has provided potential tools for ecotoxicologic investigations. However, problems of biocomplexity and issues at higher levels of biological organization remain a challenge. In the 1980s and 1990s and continuing to a lesser extent today, organisms residing in highly contaminated field sites or exposed in the laboratory to calibrated concentrations of individual compounds were carefully analyzed for their responses to priority pollutants. Correlation of biochemical and structural analyses in cultured cells and tissues, as well as the in vivo exposures led to the production and application of biomarkers of exposure and effect and to our awareness of genotoxicity and its chronic manifestations, such as neoplasms, in wild fishes. To gain acceptance of these findings in the greater environmental toxicology community, “validation of the model” versus other, better-established often rodent models, was necessary and became a major focus. Resultant biomarkers were applied to heavily contaminated and reference field sites as part of effects assessment and with investigations following large-scale disasters such as oil spills or industrial accidents.
Over the past 15 years, in the laboratory, small aquarium fish models such as medaka (Oryzias latipes), zebrafish (Danio rerio), platyfish (Xiphophorus species), fathead minnow (Pimephales promelas), and sheepshead minnow (Cyprinodon variegatus) were increasingly used establishing mechanisms of toxicants. Today, the same organisms provide reliable information at higher levels of biological organization relevant to ecotoxicology. We review studies resolving mechanisms of toxicity and discuss ways to address biocomplexity, mixtures of contaminants, and the need to relate individual level responses to populations and communities. 相似文献
We offer an interpretation of the now widely discussed protracted onset of the epoch of solar activity minimum after cycle
23. The interpretation appeals to the Gnevyshev-Ohl rule, but in the context of a new statistical quantity-the product of
the cycle amplitude by its duration. Considering this quantity, which has the same physical meaning as that of the integrated
characteristic used by Gnevyshev and Ohl, yields a probable estimate for the onset of the minimum of the current cycle in
the interval 2009.0–2012.4. 相似文献
The Eoarchaean (>3,600 Ma) Itsaq Gneiss Complex of southern West Greenland is dominated by polyphase orthogneisses with a
complex Archaean tectonothermal history. Some of the orthogneisses have c. 3,850 Ma zircons, and they vary from rare single
phase metatonalites to more common complexly banded migmatites. This is due to heterogeneous strain, in situ anatexis and
granitic veining superimposed during younger tectonothermal events. In the single-phase tonalites with c. 3,850 Ma zircon,
oscillatory-zoned prismatic zircon is all 3,850 Ma old, but shows patchy ancient loss of radiogenic Pb. SHRIMP spot analyses
and laser ablation ICP-MS depth profiling show that thin (usually < 10 μm) younger (3,660–3,590 Ma and Neoarchaean) shells
of lower Th/U metamorphic zircon are present on these 3,850 Ma zircons. Several samples with this simple zircon population
occur on islands near Akilia. In contrast, migmatites usually contain more complex zircon populations, with often more than
one generation of igneous zircon present. Additional zircon dating of banded gneisses across the Complex shows that samples
with c. 3,850 Ma igneous zircon are not just a phenomenon restricted to Akilia and adjacent islands. For example, migmatites
from Itilleq (c. 65 km from Akilia) contain variable amounts of oscillatory-zoned 3,850 Ma and 3,650 Ma zircon, interpreted,
respectively, as the rock age and the time of crustal melting under Eoarchaean metamorphism. With only 110–140 ppm Zr in the
tonalites and likely magmatic temperatures of >850°C, zircon solubility–melt composition relationships show that they were
only one-third saturated in zircon. Any zircon entrained in the precursor magmas would thus have been highly soluble. Combined
with the cathodoluminesence imaging, this demonstrates that the c. 3,850 Ma oscillatory zoned zircon crystallised out of the
melt and hence gives a magmatic age. Thus the rare well-preserved tonalites and palaeosome in migmatites testify that c. 3,850 Ma
quartzo–feldspathic rocks are a widespread (but probably minor) component in the Itsaq Gneiss Complex. C. 3,850 Ma zircon
with negative Eu anomalies (showing growth in felsic systems) also occurs as detrital grains in rare c. 3,800 Ma metaquartzites
and as inherited grains in some 3,660 Ma granites (sensu stricto). These demonstrate that still more c. 3,850 Ma rocks were present, but were recycled into Eoarchaean sediments and crustally
derived granites. The major and trace element characteristics (e.g. LREE enrichment, HREE depletion, low MgO) of the best-preserved
c. 3,850 Ma rocks are typical of Archaean TTG suites, and thus argue for crust formation processes involving important contributions
from melting of hydrated mafic crust to the earliest Archaean. Five c. 3,850 Ma tonalites were selected as the best preserved
on the basis of field criteria and zircon petrology. Four of these samples have overlapping initial ɛNd (3,850 Ma) values from +2.9 to +3.6± 0.5, with the fourth having a slightly lower value of +0.6. These data provide additional
evidence for a markedly LREE-depleted early terrestrial mantle reservoir. The role of c. 3,850 Ma crust should be considered
in interpreting isotope signatures of the younger (3,800–3,600 Ma) rocks of the Itsaq Gneiss Complex.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
In the Arctic and Antarctic there are spectacular fossil forests. They are true 'polar forests' because not only are they found as fossils in high latitudes today-they actually grew in the polar regions. They provide important evidence that the climate of the Earth was once much warmer, and that the trees must have been adapted to the strange polar light-regime of winter darkness and continuous summer sunlight. 相似文献
Experimental studies in the system Fe,Ni–olivine–carbonate–S (P = 6.3 GPa, T = 1050–1550°C, t = 40–60 h) aimed at modeling of the interaction of subducted carbonates and sulfur with rocks of the silicate mantle and at investigation of the likely mechanism of the formation of mantle sulfides were performed. It is shown that an association of olivine + orthopyroxene + magnesite + pyrite coexisting with a sulfur melt/fluid with dissolved Fe, Ni, and O is formed at T ≤ 1250°C. An association of low-Fe olivine, orthopyroxene, and magnesite and two immiscible melts of the carbonate and S–Fe–Ni–O compositions are formed at T ≥ 1350°C. It is shown that the reduced S-bearing fluids may transform silicates and carbonates, extract metals from the solid-phase matrix, and provide conditions for generation of sulfide melts. 相似文献
Induced precipitation of phosphate minerals to scavenge trace elements from groundwater is a potential remediation approach for contaminated aquifers. The success of engineered precipitation schemes depends on the particular phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for phosphate mineral precipitation rely on stimulation of native microbial populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 mL-1) added to the precipitation medium. In addition, we tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM).
Results
The general progression of mineral precipitation was similar under all of the study conditions, with initial formation of amorphous calcium phosphate, and transformation to poorly crystalline hydroxylapatite (HAP) within one week. The presence of the bacterial cells appeared to delay precipitation, although by the end of the experiments the overall extent of precipitation was similar for all treatments. The stoichiometry of the final precipitates as well as Rietveld structure refinement using x-ray diffraction data indicated that the presence of organic acids and bacterial cells resulted in an increasing a and decreasing c lattice parameter, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the solids was decreased in the treatments with cells and organic acids, compared to the control.
Conclusions
Our results suggest that the minerals formed initially during an engineered precipitation application for trace element sequestration may not be the ones that control long-term immobilization of the contaminants. In addition, the presence of bacterial cells appears to be associated with delayed HAP precipitation, changes in the lattice parameters, and reduced incorporation of trace elements as compared to cell-free systems. Schemes to remediate groundwater contaminated with trace metals that are based on enhanced phosphate mineral precipitation may need to account for these phenomena, particularly if the remediation approach relies on enhancement of in situ microbial populations. 相似文献
The concentration and composition of suspended particulate matter (SPM) were measured weekly for a period of one year in the flood front waters traversing a muddy tidal flat. SPM concentrations were lowest in the winter when portions of the tidal flat were covered with ice, and biological activity was minimal. In contrast, the summer months had the highest SPM concentrations which reflected increased bottom resuspension. The two main sources of SPM were suspended matter carried in from offshore on the flooding tide and resuspended in situ bottom sediments. The offshore source was characterized by low SPM concentrations, coarse textures, and a high content of protein and chlorophyll ‘a’. Samples taken during resuspension events (storms/showers) had high SPM concentrations, finer textures, and were enriched in dead detrital organic material (phaeophytin). At any one time the SPM was primarily an admixture of these two sources. The highest SPM measurements were taken during storm events, with rainfall seeming to play a dominant physical role in aiding resuspension. SPM concentrations, textures, and compositions collected during the storms closely approximated SPM measurements made over newly dug ‘clam flats’. 相似文献