首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6913篇
  免费   322篇
  国内免费   27篇
测绘学   206篇
大气科学   446篇
地球物理   2647篇
地质学   2302篇
海洋学   243篇
天文学   1147篇
综合类   31篇
自然地理   240篇
  2022年   49篇
  2021年   121篇
  2020年   115篇
  2019年   88篇
  2018年   287篇
  2017年   270篇
  2016年   422篇
  2015年   291篇
  2014年   321篇
  2013年   429篇
  2012年   345篇
  2011年   302篇
  2010年   287篇
  2009年   294篇
  2008年   242篇
  2007年   173篇
  2006年   176篇
  2005年   165篇
  2004年   131篇
  2003年   139篇
  2002年   112篇
  2001年   107篇
  2000年   108篇
  1999年   66篇
  1998年   97篇
  1997年   84篇
  1996年   62篇
  1995年   86篇
  1994年   100篇
  1993年   63篇
  1992年   66篇
  1991年   66篇
  1990年   75篇
  1989年   65篇
  1988年   58篇
  1987年   61篇
  1986年   68篇
  1985年   61篇
  1984年   50篇
  1983年   70篇
  1982年   68篇
  1981年   67篇
  1980年   54篇
  1979年   54篇
  1978年   62篇
  1977年   64篇
  1976年   46篇
  1975年   52篇
  1973年   66篇
  1971年   58篇
排序方式: 共有7262条查询结果,搜索用时 250 毫秒
931.
It has been suggested that climate change might modify the occurrence rate of large storms and their magnitude, due to a higher availability of energy in the atmosphere-ocean system. Forecasting physical models are commonly used to assess the effects. No one expects the physical model forecasts for one specific day to be accurate; we consider them to be good if they adequately describe the statistical characteristics of the climate. The Peak-Over-Threshold (POT) method is a common way to statistically treat the occurrence and magnitude of hazardous events: here, occurrence is modelled as a Poisson process and magnitude over a given threshold is assumed to follow a Generalized Pareto Distribution (GPD). We restrict our attention to Weibull-related GPDs, which exhibit an upper bound, to comply with the fact that any physical process has a finite upper limit. This contribution uses this framework to model time series of log-significant wave-height constructed joining quasi-collocated hindcast data and buoy measurements. Two of the POT model parameters (inhomogeneous Poisson rate and logarithm of the GPD shape parameter are considered to be a combination of a linear function of time and a series indicator function. The third parameter, logarithm of the GPD upper bound, is considered to have only a series indicator component. The resulting parameters are estimated using Bayesian methods. Using hincast and buoy series, the time span of the data set is extended, enhancing the precision of statistical results about potential linear changes. Simultaneously the statistical behaviour of hincast and buoy series are compared. At the same time, the step function allows to calibrate the statistical reproduction of storms by hindcasting.  相似文献   
932.
Downslope windstorms at Kvísker in Southeast Iceland are explored using a mesoscale model, observations and numerical analysis of the atmosphere. Two different types of gravity-wave induced windstorms are identified. At the surface, their main difference is in the horizontal extent of the lee-side accelerated flow. Type S (Short) is a westerly windstorm, which is confined to the lee-slopes of Mount ?r?faj?kull, while a Type E (Extended) windstorm occurs in the northerly flow and is not confined to the lee-slopes but continues some distance downstream of the mountain. The Type S windstorm may be characterized as a more pure gravity-wave generated windstorm than the Type E windstorm which bears a greater resemblance to local flow acceleration described by hydraulic theory. The low-level flow in the Type E windstorm is of arctic origin and close to neutral with an inversion well above the mountain top level. At middle tropospheric levels there is a reverse vertical windshear. The Type S windstorm occurs in airmasses of southerly origin. It also has a well-mixed, but a shallower boundary-layer than the Type E windstorms. Aloft, the winds increase with height and there is an amplified gravity wave. Climate projections indicate a possible decrease in windstorm frequency up to the year 2050.  相似文献   
933.
Temperature and wind speed profiles obtained from 3?years of radio acoustic sounding system sodar measurements at a rural site in the northern Spanish plateau were fitted to polynomial functions. Depending on the extrema of these fits, several groups of profiles were considered. Daily evolution of temperature profiles corresponded to the lower boundary layer evolution. However, wind speed profiles revealed a frequent low-level jet during the whole day. CO2 surface concentrations were analysed, and surface CO2 dilution was also considered by selection of thin canopies with variable depth, resulting in dilution rates of 7 and 18?ppm when the layer increased 100?m for the 95th percentile and temperature and wind speed profiles, respectively.  相似文献   
934.
We show the evaluation of ENSEMBLES regional climate models (RCMs) driven by reanalysis ERA40 over a region centered at the Czech Republic. Attention is paid especially to the model ALADIN-CLIMATE/CZ, being used as the basis of the new climate change scenarios simulation for the Czech Republic. The validation criteria used here are based on monthly or seasonal mean air temperature and precipitation. We concentrate not only on spatiotemporal mean values but also on temporal standard deviation, inter-annual variability, the mean annual cycle, and the skill of the models to represent the observed spatial patterns of these quantities. Model ALADIN-CLIMATE/CZ performs quite well in comparison to the other RCMs; we find its performance satisfactory for further use for impact studies. However, it is also shown that the results of evaluation of the RCMs’ skill in simulating observed climate strongly depend on the criteria incorporated for the evaluation.  相似文献   
935.
In continental areas, the maximum rainfall simulated with the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) occurs around 4?h earlier than the one observed with rain gauges. This work presents the successful implementation of a new convective trigger function (CTF) in the convective parameterization scheme used in BRAMS that corrects this misfit between model and observations. The importance of the CTF formulation on the diurnal cycle of rainfall over the Amazon Basin is reflected by the following numbers: Over Rondonia (SW Amazonia), the original version of BRAMS simulates the maximum rainfall at 1400 UTC (1000 LST), with the new CTF maximum shifting to 1800?UTC (1400?LST), while the S-band radar rainfall maximum is at 1900?UTC (1500?LST). This is attributed to two factors: (1) the new CTF is now coupled to the sensible and latent heat fluxes at surface; (2) during the early morning, the convective available potential energy is reduced.  相似文献   
936.
For the analysis of trends in weather extremes, we introduce a diagnostic index variable, the exceedance product, which combines intensity and frequency of extremes. We separate trends in higher moments from trends in mean or standard deviation and use bootstrap resampling to evaluate statistical significances. The application of the concept of the exceedance product to daily meteorological time series from Potsdam (1893 to 2005) and Prague–Klementinum (1775 to 2004) reveals that extremely cold winters occurred only until the mid-20th century, whereas warm winters show upward trends. These changes were significant in higher moments of the temperature distribution. In contrast, trends in summer temperature extremes (e.g., the 2003 European heatwave) can be explained by linear changes in mean or standard deviation. While precipitation at Potsdam does not show pronounced trends, dew point does exhibit a change from maximum extremes during the 1960s to minimum extremes during the 1970s.  相似文献   
937.
Three different reconstructed wind-stress fields which take into account variations of the North Atlantic Oscillation, one general circulation model wind-stress field, and three radiative forcings (volcanic activity, insolation changes and greenhouse gas changes) are used with the UVic Earth System Climate Model to simulate the surface air temperature, the sea-ice cover, and the Atlantic meridional overturning circulation (AMOC) since 1500, a period which includes the Little Ice Age (LIA). The simulated Northern Hemisphere surface air temperature, used for model validation, agrees well with several temperature reconstructions. The simulated sea-ice cover in each hemisphere responds quite differently to the forcings. In the Northern Hemisphere, the simulated sea-ice area and volume during the LIA are larger than the present-day area and volume. The wind-driven changes in sea-ice area are about twice as large as those due to thermodynamic (i.e., radiative) forcing. For the sea-ice volume, changes due to wind forcing and thermodynamics are of similar magnitude. Before 1850, the simulations suggest that volcanic activity was mainly responsible for the thermodynamically produced area and volume changes, while after 1900 the slow greenhouse gas increase was the main driver of the sea-ice changes. Changes in insolation have a small effect on the sea ice throughout the integration period. The export of the thicker sea ice during the LIA has no significant effect on the maximum strength of the AMOC. A more important process in altering the maximum strength of the AMOC and the sea-ice thickness is the wind-driven northward ocean heat transport. In the Southern Hemisphere, there are no visible long-term trends in the simulated sea-ice area or volume since 1500. The wind-driven changes are roughly four times larger than those due to radiative forcing. Prior to 1800, all the radiative forcings could have contributed to the thermodynamically driven changes in area and volume. In the 1800s the volcanic forcing was dominant, and during the first part of the 1900s both the insolation changes and the greenhouse gas forcing are responsible for thermodynamically produced changes. Finally, in the latter part of the 1900s the greenhouse gas forcing is the dominant factor in determining the sea-ice changes in the Southern Hemisphere.
Jan SedláčekEmail:
  相似文献   
938.
The first 1,000 year long Carpathian tree-ring width chronology was established based on living and subfossil stone pine (Pinus cembra L.) samples from an upper timberline forest located in Calimani Mts. (Romania). Tree-ring data were standardized using the regional curve standardization method in order to preserve the low and medium frequency climate signals. The de-trended index strongly correlates with summer mean temperature both at annual and decadal scales. The Calimani summer mean temperature anomalies were reconstructed for the period ad 1163-2005 applying the rescaling method. This new climate proxy from the Carpathians shows similar fluctuations to other North Hemispheric temperature reconstructions, but with periods of distinct differences. The fingerprint of Little Ice Age in the Calimani area is visible between ad 1370 and 1630 followed by lagged cold decades in ad 1820 and 1840. The recent warming is evident only after the 1980s in our reconstruction.  相似文献   
939.
940.
The Lakagígar eruption in Iceland during 1783 was followed by the severe winter of 1783/1784, which was characterised by low temperatures, frozen soils, ice-bound watercourses and high rates of snow accumulation across much of Europe. Sudden warming coupled with rainfall led to rapid snowmelt, resulting in a series of flooding phases across much of Europe. The first phase of flooding occurred in late December 1783–early January 1784 in England, France, the Low Countries and historical Hungary. The second phase at the turn of February–March 1784 was of greater extent, generated by the melting of an unusually large accumulation of snow and river ice, affecting catchments across France and Central Europe (where it is still considered as one of the most disastrous known floods), throughout the Danube catchment and in southeast Central Europe. The third and final phase of flooding occurred mainly in historical Hungary during late March and early April 1784. The different impacts and consequences of the above floods on both local and regional scales were reflected in the economic and societal responses, material damage and human losses. The winter of 1783/1784 can be considered as typical, if severe, for the Little Ice Age period across much of Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号