Madagascar’s largest estuary (Betsiboka) was sampled along the salinity gradient during the dry season to document the distribution and sources of particulate and dissolved organic carbon (POC, DOC) as well as dissolved inorganic carbon (DIC). The Betsiboka was characterized by a relatively high suspended matter load, and in line with this, low DOC/POC ratios (0.4–2.5). The partial pressure of CO2 (pCO2) was generally above atmospheric equilibrium (270–1530 ppm), but relatively low in comparison to other tropical and subtropical estuaries, resulting in low average CO2 emission to the atmosphere (9.1 ± 14.2 mmol m−2 d−1). Despite the fact that C4 vegetation is reported to cover >80% of the catchment area, stable isotope data on DOC and POC suggest that C4 derived material comprises only 30% of both pools in the freshwater zone, increasing to 60–70% and 50–60%, respectively, in the oligohaline zone due to additional lateral inputs. Sediments from intertidal mangroves in the estuary showed low organic carbon concentrations (<1%) and δ13C values (average −19.8‰) consistent with important inputs of riverine imported C4 material. This contribution was reflected in δ13C signatures of bacterial phospholipid derived fatty acids (i + a15:0), suggesting the potential importance of terrestrial organic matter sources for mineralization and secondary production in coastal ecosystems. 相似文献
Submarine lava flow morphology is commonly used to estimate relative flow velocity, but the effects of crystallinity and viscosity are rarely considered. We use digital petrography and quantitative textural analysis techniques to determine the crystallinity of submarine basaltic lava flows, using a set of samples from previously mapped lava flow fields at the hotspot-affected Galápagos Spreading Center. Crystallinity measurements were incorporated into predictive models of suspension rheology to characterize lava flow consistency and rheology. Petrologic data were integrated to estimate bulk lava viscosity. We compared the crystallinity and viscosity of each sample with its flow morphology to determine their respective roles in submarine lava emplacement dynamics. We find no correlation between crystallinity, bulk viscosity, and lava morphology, implying that flow advance rate is the primary control on submarine lava morphology. However, we show systematic variations in crystal size and shape distribution among pillows, lobates, and sheets, suggesting that these parameters are important indicators of eruption processes. Finally, we compared the characteristics of lavas from two different sampling sites with contrasting long-term magma supply rates. Differences between lavas from each study site illustrate the significant effect of magma supply on the physical properties of the oceanic upper crust. 相似文献
Soaring migrants such as storks, pelicans and large birds of prey rely on thermal convection during migration. The convection model ALPTHERM was designed to predict the onset, strength, duration and depth of thermal convection for varying topographies for glider pilots, based on atmospheric conditions at midnight. We tested ALPTHERM predictions as configured for two topographies of central Israel, the Coastal Plains and the Judean and Samarian Mountains in order to predict altitudes of migrating white storks (Ciconia ciconia). Migrating flocks of white storks were tracked with a motorized glider, to measure maximum altitudes of migration during spring 2000. A significant positive correlation was found between the maximum daily altitudes of migration measured and the predicted upper boundary of thermal convection for the Coastal Plains and Samarian Mountains. Thirty-minute predictions for the Coastal Plains and Samarian Mountains correlated positively with measured maximum migration altitudes per thermal. ALPTHERM forecasts can be used to alter flight altitudes in both civil and especially military aviation and reduce the hazard of serious aircraft collisions with soaring migrants. 相似文献
Major transformation of the global energy system is required for climate change mitigation. However, energy demand patterns and supply systems are themselves subject to climate change impacts. These impacts will variously help and hinder mitigation and adaptation efforts, so it is vital they are well understood and incorporated into models used to study energy system decarbonisation pathways. To assess the current state of understanding of this topic and identify research priorities, this paper critically reviews the literature on the impacts of climate change on the energy supply system, summarising the regional coverage of studies, trends in their results and sources of disagreement. We then examine the ways in which these impacts have been represented in integrated assessment models of the electricity or energy system.Studies tend to agree broadly on impacts for wind, solar and thermal power stations. Projections for impacts on hydropower and bioenergy resources are more varied. Key uncertainties and gaps remain due to the variation between climate projections, modelling limitations and the regional bias of research interests. Priorities for future research include the following: further regional impact studies for developing countries; studies examining impacts of the changing variability of renewable resources, extreme weather events and combined hazards; inclusion of multiple climate feedback mechanisms in IAMs, accounting for adaptation options and climate model uncertainty. 相似文献
Wetlands are highly dynamic and productive systems that have been under increased pressure from changes in land use and water management strategies. In Eastern Africa, wetlands provide resources at multiple spatial and temporal levels through farming, fishing, livestock ownership and a host of other ecosystem services that sustain the local economy and individual livelihoods. As part of a broader effort to describe future development scenarios for East African coastal wetlands, this qualitative study focuses on understanding the processes by which river water depletion has affected local food production systems in Kenya's Tana River Delta over the past 50 years, and how this situation has impacted residents’ livelihoods and well-being. Interviews performed in six villages among various ethnic groups, geographical locations and resource profiles indicated that the agro-ecological production systems formerly in place were adapted to the river's dynamic flooding patterns. As these flooding patterns changed, the local population diversified and abandoned or adopted various farming, fishing and livestock-rearing techniques. Despite these efforts, the decrease in water availability affected each subcomponent of the production systems under study, which led to their collapse in the 1990s. Water depletion negatively impacted local human well-being through the loss of food security. The current study provides a detailed account of the dynamics of agro-ecological production systems facing the effects of river water depletion in a wetland-associated environment in Sub-Saharan Africa. 相似文献
The low-frequency evolution of Indian rainfall mean-state and associated interannual-to-decadal variability is discussed for the last 6000 years from a multi-configuration ensemble of fully coupled global transient simulations. This period is marked by a shift of Indian Summer Monsoon Rainfall (ISMR) distribution towards drier conditions, including extremes, and a contraction of the rainy season. The drying is larger in simulations with higher horizontal resolution of the atmosphere and revised land surface hydrology. Vegetation–climate interactions and the way runoff is routed to ocean modulate the timing of the monsoon onset but have negligible effects on the evolution of seasonal rainfall amounts in our modeling framework in which carbon cycling is always active. This drying trend is accompanied by changes in ISMR interannual-to-decadal variability decreasing over north and south India but increasing over central India (20°–25° N). The ISMR interannual-to-decadal variability is decomposed into six physically consistent regimes using a clustering technique to further characterize its changes and associated teleconnections. From 6 to 3.8 kyr bp, the century-to-century modulations in the frequency of occurrence associated to the regimes are asynchronous between the simulations. Orbitally-driven trends can only be detected for two regimes over the whole 6–0 kyr bp period. These two regimes reflect increased influence of ENSO on both ISMR and Indian Ocean Dipole as the inter-hemispheric energy gradient weakens. Severe long-term droughts are also shown to be a combination of long-term drying and internally generated low-frequency modulations of the interannual-to-decadal variability.
The paper reviews the problem of formation and evolution of the so-called regular satellites of the giant planets, and it consists of two parts: the first describes the possible origin of the satellites, the second studies their evolution, attempting to stress the relations of the present status of the satellites with their evolutionary history.The formation of regular satellite systems around giant planets is probably related to the formation of the central planet. Some characteristics of regular satellite systems are quite similar, and suggest a common origin in a disk present around the central body. This disk can originate through different mechanisms which we will describe, paying attention to the so-called accretion disk model, in which the satellite-forming material is captured. The disk phase links the formation of the primary body with the formation of satellites. The subsequent stages of the disk's evolution can lead first to the formation of intermediate size bodies, and through the collisional evolution of these bodies, to the birth of satellite embryos able to gravitationally capture smaller bodies.Given the scenario in which icy satellites may be formed by homogeneous accretion of planetesimals made of a mixtures of ice and silicates, if no melting occurs during accretion, the satellites have a homogeneous ice-rock composition. For the smaller satellites this homogeneous structure should not be substantially modified; only sporadic local events, such as large impacts, can modify the surface structure of the smaller satellites. For the larger satellites, if some degree of melting appears during accretion, a differentiation of the silicate part occurs, the amount of differentiation and hence the core size depending on the fraction of gravitational potential energy retained during the accumulation process. Melting and differentiation soon after the accretion, for the larger satellites, could also depend on the convective evolution in presence of phase transitions and generate an intermediate rock layer, considerably denser than the underlying, still homogeneous core, and unstable to overturning on a geologic time scale. Moreover the liquid water mantle could be a transient feature because the mantle would freeze over several hundred million years. For these large bodies the stable configuration is expected to be one consisting of a silicate core and a mantle of mixed rock and ice. 相似文献
Based upon a re-interpretation of previous data and a new field campaign, a structural evolution is proposed for the early history of Piton de la Fournaise volcano from 500,000 to 50,000 years. Conceptually, it is shown that the formation of a caldera in which lava flows are contained inside the caldera depression, gives time for erosion to excavate deep canyons on the external slopes of the volcano, for example, the Rivière des Remparts, the Rivière Langevin and the Rivière de l'Est canyons on Piton de la Fournaise volcano. These canyons are infilled when lavas, filling the caldera and overflowing its rim, are able again to flow on the external slopes of the volcano. In the past, this excavating/infilling process has occurred twice following the formation of the Rivière des Remparts and Morne Langevin calderas. The formation of the third caldera, the Plaine des Sables caldera, was followed by the excavation of the current canyons. In addition to this process, two large landslides have been documented in the field. The first, which happened about 300,000 years ago, is apparently the first episode of the break up of Piton de la Fournaise volcano, predating the formation of the four large calderas. The second landslide, which occurred 150,000 years ago and is considered to be less extensive, has carried away the entire southern flank of the Rivière des Remparts caldera. 相似文献