首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   682篇
  免费   28篇
  国内免费   4篇
测绘学   17篇
大气科学   48篇
地球物理   139篇
地质学   343篇
海洋学   49篇
天文学   83篇
自然地理   35篇
  2024年   1篇
  2023年   6篇
  2021年   13篇
  2020年   15篇
  2019年   10篇
  2018年   27篇
  2017年   17篇
  2016年   31篇
  2015年   24篇
  2014年   30篇
  2013年   42篇
  2012年   39篇
  2011年   52篇
  2010年   46篇
  2009年   61篇
  2008年   49篇
  2007年   32篇
  2006年   33篇
  2005年   31篇
  2004年   33篇
  2003年   27篇
  2002年   30篇
  2001年   12篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1986年   4篇
  1984年   1篇
  1983年   4篇
  1979年   1篇
排序方式: 共有714条查询结果,搜索用时 15 毫秒
651.
A one-dimensional vertical model has been developed to simulate the water mass circulation along the vertical structure in all deep coastal areas. The model has hydrodynamic and transport components solved using finite difference scheme. The one-dimensional vertical model results are coupled to the vertically averaged two-dimensional model results at each point of a horizontal grid. A theoretical salinity profile is introduced for each vertically integrated value obtained from the 2DH model results. A viscosity profile, simulating a viscosity value close to zero at the surface and with large viscosity gradients, is applied along the water column. The model is applied to the Vridi channel, connecting the Ebrié lagoon to the sea (Ivory Coast).The response of the Ebrié lagoon is studied in terms of inflow and outflow of water in the system through the Vridi channel. Due to the abrupt variation of the surface slope, vertical velocities along the water column show an anticlockwise spiral from bottom to surface during a tidal cycle. Due to the bottom friction and to the vertical viscosity profile, velocities decrease from surface to bottom. However, the freshwater inflow slows down the tidal propagation during the flood and causes the surface velocity to be smaller than the bottom velocity at mid-tide. Close to the bottom, velocities follow an anticlockwise movement due to the tidal propagation. At the water surface, velocities follow only an alternative movement of either ebb or flood, along the channel direction. No cross shore velocities can develop at the surface in the channel.  相似文献   
652.
A solid can be regarded as a set of contiguous elementary units. The distribution within the solid of any properties, measurable within each elementary unit, can be characterized using two parameters. These parameters are built using the constitution and distribution heterogeneities of Gy. The former account for the granularity of the elementary units, whereas the latter assess the spatial distribution of the property. A texture which definition involves several properties can be described using a diagram where both parameters work as variables. Potential applications encompass (i) the textural classification of soils, ore, breccia, and concrete and (ii) the monitoring of textural transformation during process like dolomitization, metamorphism, weathering, deformation, or annealing.  相似文献   
653.
Synthetic aperture radar (SAR) sensors are often used to characterize the surface of bare soils in agricultural environments. They enable the soil moisture and roughness to be estimated with constraints linked to the configurations of the sensors (polarization, incidence angle and radar wavelength). These key soil characteristics are necessary for different applications, such as hydrology and risk prediction. This article reviews the potential of currently operational SAR sensors and those planned for the near future to characterize soil surface as a function of users' needs. It details what it is possible to achieve in terms of mapping soil moisture and roughness by specifying optimal radar configurations and the precision associated with the estimation of soil surface characteristics. The summary carried out for the present article shows that mapping soil moisture is optimal with SAR sensors at low incidence angles (<35 ). This configuration, which enables an estimated moisture accuracy greater than 6% is possible several times a month taking into account all the current and future sensors. Concerning soil roughness, it is best mapped using three classes (smooth, moderately rough, and rough). Such mapping requires high‐incidence data, which is possible with certain current sensors (RADARSAT‐1 and ASAR both in band C). When L‐band sensors (ALOS) become available, this mapping accuracy should improve because the sensitivity of the radar signal to Soil Surface Characteristics (SSC) increases with wavelength. Finally, the polarimetric mode of certain imminent sensors (ALOS, RADARSAT‐2, TerraSAR‐X, etc.), and the possibility of acquiring data at very high spatial resolution (metre scale), offer great potential in terms of improving the quality of SSC mapping. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
654.
Herbaceous vegetation in the Sahel grows almost exclusively on sandy soils which preferentially retain water through infiltration and storage. The hydrological functioning of these sandy soils during rain cycles is unknown. One way to tackle this issue is to spatialize variations in water content but these are difficult to measure in the vadose zone. We investigated the use of Electrical Resistivity Tomography (ERT) as a technique for spatializing resistivity in a non-destructive manner in order to improve our knowledge of relevant hydrological processes. To achieve this, two approaches were examined. First, we focused on a possible link between water tension (which is much easier to measure in the field by point measurements than water content), and resistivity (spatialized with ERT). Second, because ERT is affected by solution non-uniqueness and reconstruction smoothing, we improved the accuracy of ERT inversion by comparing calculated solutions with in-situ resistivity measurements. We studied a natural microdune during a controlled field experiment with artificial sprinkling which reproduced typical rainfall cycles. We recorded temperature, water tension and resistivity within the microdune and applied surface ERT before and after the 3 rainfall cycles. Soil samples were collected after the experiment to determine soil physical characteristics. An experimental relationship between water tension and water content was also investigated. Our results showed that the raw relationship between calculated ERT resistivity and water tension measurements in sand is highly scattered because of significant spatial variations in porosity. An improved correlation was achieved by using resistivity ratio and water tension differences. The slope of the relationship depends on the soil solution conductivity, as predicted by Archie's law when salted water was used for the rain simulation. We found that determining the variations in electrical resistivity is a sensitive method for spatializing the differences in water tension which are directly linked with infiltration and evaporation/drainage processes in the vadose zone. However, three factors complicate the use of this approach. Firstly, the relation between water tension and water content is generally non-linear and dependent on the water content range. This could limit the use of our site-specific relations for spatializing water content with ERT through tension. Secondly, to achieve the necessary optimization of ERT inversion, we used destructive resistivity measurements in the soil, which renders ERT less attractive. Thirdly, we found that the calculated resistivity is not always accurate because of the smoothing involved in surface ERT data inversion. We conclude that further developments are needed into ERT image reconstruction before water tension (and water content) can be spatialized in heterogeneous sandy soils with the accuracy needed to routinely study their hydrological functioning.  相似文献   
655.
Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys   总被引:3,自引:0,他引:3  
Many of the heaviest and lightest natural zinc (Zn) isotope ratios have been discovered in hydrothermal ore deposits. However, the processes responsible for fractionating Zn isotopes in hydrothermal systems are poorly understood. In order to better assess the total range of Zn isotopes in hydrothermal systems and to understand the factors which are responsible for this isotopic fractionation, we have measured Zn isotopes in seafloor hydrothermal fluids from numerous vents at 9–10°N and 21°N on the East Pacific Rise (EPR), the TAG hydrothermal field on the Mid-Atlantic Ridge, and in the Guaymas Basin. Fluid δ66Zn values measured at these sites range from + 0.00‰ to + 1.04‰. Of the many physical and chemical parameters examined, only temperature was found to correlate with fluid δ66Zn values. Lower temperature fluids (< 250 °C) had both heavier and more variable δ66Zn values compared to higher temperature fluids from the same hydrothermal fields. We suggest that subsurface cooling of hydrothermal fluids leads to precipitation of isotopically light sphalerite (Zn sulfide), and that this process is a primary cause of Zn isotope variation in hydrothermal fluids. Thermodynamic calculations carried out to determine saturation state of sphalerite in the vent fluids support this hypothesis with isotopically heaviest Zn found in fluids that were calculated to be saturated with respect to sphalerite. We have also measured Zn isotopes in chimney sulfides recovered from a high-temperature (383 °C) and a low-temperature (203 °C) vent at 9–10°N on the EPR and, in both cases, found that the δ66Zn of chimney minerals was lighter or similar to the fluid δ66Zn. The first measurements of Zn isotopes in hydrothermal fluids have revealed large variations in hydrothermal fluid δ66Zn, and suggest that subsurface Zn sulfide precipitation is a primary factor in causing variations in fluid δ66Zn. By understanding how chemical processes that occur beneath the seafloor affect hydrothermal fluid δ66Zn, Zn isotopes may be used as a tracer for studying hydrothermal processes.  相似文献   
656.
Zinc in muscle tissue from 28 species of fish, three species of sharks and rays, two species of squid and cuttlefish, and three species of crustacea collected from Cleveland Bay, together with some measurements made on oysters and mangrove flora and fauna are reported. In the fish species the mean Zn concentration in muscle tissue was 4.83 ± 2.82 μg/g wet weight, slightly lower than zinc measurements (7 μg/g wet weight) made in 14 fish species collected from the bay in 1975. Zinc in sharks and rays ranged from 3.5 to 7.2 μg/g wet wt, in squid and cuttlefish 13–16 μg/g wet wt, and in crustacea levels ranged from 14 to 18 μg/g wet wt. Zinc levels in fish varied between species with concentrations well below the ANZECC Maximum Residue Limit of zinc in seafood (150 μg/g wet wt). Although lower zinc concentrations were found in oysters collected from the Townsville Harbour area (2080 μg/g wet wt), compared with previous measurements made 25 years ago at this site, these levels are still above the Maximum Residue Limit for zinc in oysters (1000 μg/g wet wt). Concentrations of zinc in oysters from Orpheus Island (2547 μg/g wet wt), about 74 km away from industrial and urban activity, are also above the safe guideline values. Horseshoe Bay oysters transplanted to Ross Creek accumulated zinc at a rate of about 100 μg/g of oyster tissue per week, suggesting that dissolved zinc levels at this site are elevated, and that oysters rapidly accumulate zinc. Highest concentrations of zinc in mangrove leaves (30–65 μg/g dry wt) occurred in Osbornia octodonta, Exocaria agalocha, and Aegialitus annulata, compared with Ceriops tagal, and Avicennia marina (5–10 μg/g dry wt). No significant difference in zinc concentration occurred between leaves and litter fall for most of these species, with the sole exception of Exocaria, which showed almost a twofold increase in concentration. In seven species of mangrove fauna levels of zinc were very uniform and close to 50 μg/g (dry wt) Telescopium telescopium from the mouth of the Ross Estuary was the exception with levels at 400 μg/g (dry wt).  相似文献   
657.
Comparative assessment of stone weathering intensities and bioclimatic conditions was conducted at four temples located in cleared and forested sites of the Angkor Park, based on similar protocols. Four thousand sculpted lotus petals carved in the same grey sandstone were categorized by using two customized scales of weathering intensity, and climate monitoring was conducted from December 2008 to November 2009. Whereas 70% of the sandstone lotus petals are almost completely destroyed by mechanical weathering in cleared areas, 74% of petals located in forested environments appear to be totally free of mechanical weathering and are only affected by superficial biochemical weathering. Ambient conditions are also contrasting, with the magnitude of the diurnal surface temperature and relative humidity ranges being three times higher at cleared sites than in wooded areas. As wetting–drying cycles are the driving force of sandstone decay at Angkor, causal links are suggested between weathering and climate regimes. In wooded areas, the microclimate is buffered by the forest and the associated lithobionts, which maintain constant humidity levels, reduce thermal stresses at the stone surface and induce a slow biochemical weathering regime. In cleared areas, direct exposure to sunshine and monsoon rains induces pronounced wetting–drying cycles conducive to swelling–shrinking movements and other potential processes, provoking the rapid mechanical decay of the sandstone. Even if local damage can be caused by tree roots, the forest cover and the associated lithobionts obviously play an overall protective role. Additionally, microtopographical factors related to architectural designs and post‐building events probably explain intra‐site and between site minor differences in the amount of sandstone decay, by influencing key factors such as the water residence time at the stone surface. Last, the contrasting weathering regimes in forested and cleared sites are but a trend, for besides overwhelming mechanical weathering, chemical weathering is also operative at cleared sites, as indicated by salt efflorescences and ferric oxidation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
658.
Knowledge of sediment exports from continental areas is essential for estimating denudation rates and biogeochemical cycles. However, the estimation of current sediment fluxes to the sea is often limited by the availability and quality of sediment discharge data. This study aims to quantify the relative contributions of French rivers to the sediment discharge to the ocean. Sediment fluxes were assessed using the French river quality database, which is characterized by a low temporal resolution but long‐term measurement periods. An improved rating curve approach (IRCA) using daily discharge data, which allows the estimation of mean annual sediment loads from infrequent sediment concentration data, was used to calculate sediment fluxes. The resulting mean annual sediment loads show that French rivers export c. 16.21 Mt yr‐1 of sediments to the sea. Among the 88 defined French rivers flowing to the sea, the four largest basins (Loire, Rhone, Garonne and Seine) export 13.2 Mt yr‐1, which corresponds to 81.3% of total exports. No relationship was found between the mass of exported sediment and the size of the drainage basins. This is due to the variety of river basin typologies among these rivers, including lowland rivers in temperate climates, such as the Seine on the one hand and rivers draining mountainous areas in Alpine/Mediterranean areas on the other hand, such as the Rhone. The latter contributes 60% to the total sediment export for France while its drainage area is only 19% of the total area considered. Differences between the river basins considered are also shown by temporal indicators describing the duration of the exports, which may be linked with sediment production processes over drained areas. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
659.
The difficulties of the primary interpretation of wave processes observed in the sunspot chromosphere are discussed. Frequency filtering is shown to be helpful in revealing traveling waves more clearly, which eventually affects the objectivity of estimating their parameters. The measured horizontal phase velocities are 40–70 km s?1 for umbrae and 30–70 km s?1 for penumbrae. Analysis of high-cadence observations has revealed an altitude inversion of the spatial localization of the three-minute oscillation power. It is pointed out that the pattern of umbral traveling waves is not constant and periodically gives way to the pattern of standing waves.  相似文献   
660.
Using images and laser ranging data from the NEAR-Shoemaker mission, we map lineaments on the surface of Eros in order to investigate the relationship between surface morphology and interior structure. Several sets of lineations are clearly related to visible impact craters, while others suggest that different parts of the asteroid may have undergone different stress histories. Some of these sets infer internal structure, at least on a local level. This structure may derive from Eros' parent body and suggest, although largely coherent, Eros' interior may have portions that have not undergone a common history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号