首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   654篇
  免费   18篇
  国内免费   4篇
测绘学   17篇
大气科学   47篇
地球物理   134篇
地质学   318篇
海洋学   49篇
天文学   76篇
自然地理   35篇
  2024年   1篇
  2023年   6篇
  2021年   12篇
  2020年   13篇
  2019年   9篇
  2018年   26篇
  2017年   14篇
  2016年   27篇
  2015年   24篇
  2014年   30篇
  2013年   40篇
  2012年   37篇
  2011年   45篇
  2010年   45篇
  2009年   59篇
  2008年   47篇
  2007年   26篇
  2006年   29篇
  2005年   31篇
  2004年   33篇
  2003年   27篇
  2002年   30篇
  2001年   12篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1986年   4篇
  1984年   1篇
  1983年   4篇
  1979年   1篇
排序方式: 共有676条查询结果,搜索用时 12 毫秒
11.
Haplognathia ruberrima is a cosmopolitan gnathostomulid species found in sulfur bacterial mats in mangroves in Guadeloupe (French West Indies). Haplognathia ruberrima presents a δ13C value lower than all measured meiofaunal grazers and lower than the available measured food sources of this environment. This low δ13C value can not be due to specific ingestion of 13C‐depleted methanogenic bacteria because abundances of those bacteria are reduced in surficial and deep sediments as revealed by δ13C of bacterial fatty acid. According to scanning electron microscope observations, no bacterial ectosymbionts were observed at the surface of the gnathostomulids, and transmission electron microscope views revealed the absence of bacterial endosymbionts. Energy‐dispersive X‐ray spectroscopy analysis detected low levels of sulfur (0.32%±0.8) in biological tissues of H. ruberrima, confirming the absence of thioautotrophic bacterial symbionts in these animals. Consequently, the low δ13C value of H. ruberrima can not be due to the presence of sulfur‐oxidizing symbionts but more probably to the selective and exclusive consumption of free‐living, sulfur‐oxidizing bacteria.  相似文献   
12.
13.
We study the effect of random extra-galactic magnetic fields on the propagation of protons of energy larger than 1019 eV. We show that for reasonable field values (in the 100 nG range) the transition between diffusive and ballistic regimes occurs in the same energy range as the GZK cutoff (a few 1019 eV). The usual interpretation of the flux reduction above the GZK energy in terms of a sudden reduction of the visible horizon is modified. Moreover, since the size of the diffusion sphere of a continuous source of cosmic rays is of the order of 10 Mpc, the local structure of the Universe and, therefore, of potential local astrophysical sources plays a dominant role in the expected spectrum. Under reasonable assumptions on the sources configurations the expected GZK cutoff is reduced.  相似文献   
14.
Previous time-lapse Electrical Resistivity Tomography (ERT) studies have experienced difficulties in reconstructing reliable calculated resistivity changes in the subsurface. Increases or decreases of resistivity appear in the calculated ERT image where no changes were noted in the subsurface, leading to erroneous hydrological interpretations of the geophysical results. In this article, we investigate how a variation of actual resistivity with time and at shallow depth can influence time-lapse ERT results and produce resistivity artefacts at depth. We use 1 and 2-D numerical modelling to simulate infiltration scenarios. Using a standard time-lapse inversion, we demonstrate the resistivity artefact production according to the electrode spacing parameter. We used an advanced inversion methodology with a decoupling line at shallow depth to attenuate or remove resistivity artefacts. We also applied this methodology to a field data set obtained in a semi-arid environment in Burkina Faso, West Africa. Here, time-lapse ERT shows several resistivity artefacts of calculated resistivity if a standard inversion is used. We demonstrate the importance of a dense sampling of shallow resistivity variations at shallow depth. Advanced interpretation allows us to significantly attenuate or remove the resistivity artefact production at intermediate depth and produce reliable interpretation of hydrological processes.  相似文献   
15.
In this work we summarize the initial results of a targeted effort of the ESA NEO Coordination Centre to obtain additional observational data in order to eliminate or reduce the impact probability estimate of a subset of the known near-Earth objects representing the highest fraction of the total known impact risk, as measured by the Palermo Scale.  相似文献   
16.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft completed three flybys of Mercury in 2008–2009. During the first and third of those flybys, MESSENGER passed behind the planet from the perspective of Earth, occulting the radio-frequency (RF) transmissions. The occultation start and end times, recovered with 0.1 s accuracy or better by fitting edge-diffraction patterns to the RF power history, are used to estimate Mercury's radius at the tangent point of the RF path. To relate the measured radius to the planet shape, we evaluate local topography using images to identify the high-elevation feature that defines the RF path or using altimeter data to quantify surface roughness. Radius measurements are accurate to 150 m, and uncertainty in the average radius of the surrounding terrain, after adjustments are made from the local high at the tangent point of the RF path, is 350 m. The results are consistent with Mercury's equatorial shape as inferred from observations by the Mercury Laser Altimeter and ground-based radar. The three independent estimates of radius from occultation events collectively yield a mean radius for Mercury of 2439.2±0.5 km.  相似文献   
17.
To settle the question of disulfur monoxide and sulfur monoxide deposition and occurrence on Io's surface, we performed series of laboratory experiments reproducing the condensation of S2O at low temperature. Its polymerization has been monitored by recording infrared spectra under conditions of temperature, pressure, mixing with SO2 and UV-visible radiation simulating that of Io's surface. Our experiments show that S2O condensates are not chemically stable under ionian conditions. We also demonstrate that SO and S2O outgassed by Io's volcanoes and condensing on Io's surface should lead to yellow polysulfuroxide deposits or to white deposits of S2O diluted in sulfur dioxide frost (i.e., S2O/SO2 < 0.1%). Thus S2O condensation cannot be responsible for the red volcanic deposits on Io. Comparison of the laboratory infrared spectra of S2O and polysulfuroxide with NIMS/Galileo infrared spectra of Io's surface leads us to discuss the possible identification of polysulfuroxide. We also recorded the visible transmission spectra of sulfur samples resulting from polysulfuroxide decomposition. These samples consist in a mixture of sulfur polymer and orthorhombic sulfur. Using the optical constants extracted from these measurements, we show that a linear combination of the reflectance spectra of our samples, the reflectance spectrum of orthorhombic S8 sulfur and SO2 reflectance spectrum, leads to a very good matching of Io's visible spectrum between 330 and 520 nm. We conclude then that Io's surface is probably mainly composed of sulfur dioxide and a mixture of sulfur S8 and sulfur polymer. Some polysulfuroxide could also co-exist with these dominant components, but is probably restricted to some volcanic areas.  相似文献   
18.
We consider the role of deuterium as a potential marker of location and ambient conditions during the formation of small bodies in our Solar system. We concentrate in particular on the formation of the regular icy satellites of Jupiter and the other giant planets, but include a discussion of the implications for the Trojan asteroids and the irregular satellites. We examine in detail the formation of regular planetary satellites within the paradigm of a circum-Jovian subnebula. Particular attention is paid to the two extreme potential subnebulae—“hot” and “cold”. In particular, we show that, for the case of the “hot” subnebula model, the D:H ratio in water ice measured from the regular satellites would be expected to be near-Solar. In contrast, satellites which formed in a “cold” subnebula would be expected to display a D:H ratio that is distinctly over-Solar. We then compare the results obtained with the enrichment regimes which could be expected for other families of icy small bodies in the outer Solar system—the Trojan asteroids and the irregular satellites. In doing so, we demonstrate how measurements by Laplace, the James Webb Space Telescope, HERSCHEL and ALMA will play an important role in determining the true formation locations and mechanisms of these objects.  相似文献   
19.
Luciola is a large (1 km) “multi-aperture densified-pupil imaging interferometer”, or “hypertelescope” employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a “pupil densifier” micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having “hundreds of thousands of individual receivers”. With its high limiting magnitude, reaching the m v?=?30 limit of HST when 100 collectors of 25 cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1,200 Å ultra-violet to the 20 μm infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA’s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras (currently 200 to 1,000 nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120 nm to 20 μm, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6 m2, using a specialized mid infra-red focal spacecraft. Calculations (Boccaletti et al., Icarus 145, 628–636, 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie and Le Coroller 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red. Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary “Direct Imaging Field”, and limiting magnitude, approaching that of an 8-m space telescope when 1,000 apertures of 25 cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flashes which may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, Astron Astrophys 284, 689, 1994), will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue (Ragazzoni et al., MNRAS 345, 100–110, 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015–2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100 km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号