首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
大气科学   9篇
地球物理   1篇
地质学   26篇
海洋学   1篇
天文学   5篇
自然地理   1篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1975年   2篇
排序方式: 共有43条查询结果,搜索用时 0 毫秒
41.
The modern analogue technique (MAT) was applied to six pollen sequences from the Belledonne Massif (northwestern French Alps) to estimate the effect of altitude and local parameters on pollen‐based climate reconstruction during the Lateglacial and the early Holocene. The six sites (Le Vivier (345 m a.s.l.), Les Etelles (700 m a.s.l.), La Coche (980 m a.s.l.), Montendry (1330 m a.s.l.), Le Grand Leyat (1660 m a.s.l.), La Gouille (1800 m a.s.l.)) are located in different vegetation belts (mixed deciduous woods, conifer woods, alpine pastures with maple). The main vegetation changes in the past are recorded at each site. The evolution of four climate parameters (coldest month temperature, warmest month temperature, mean annual temperature, annual precipitation) was quantitatively inferred from pollen data using MAT. The curves obtained were compared to the Les Etelles site, which was the least affected by non‐local pollen transport. The results show consistent trends for the climate parameters reconstructed at the different sites. However, the reconstruction does not indicate a decrease in temperature values related to the increasing elevation. Difficulties in reconstructing the altitudinal variations of climate parameters from pollen data during the periods studied are discussed and perspectives for improvement are considered. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
42.
The high topographic complexity of the Alpine region is the origin of important climate differences that characterise the different areas of the Alps. These differences might have had a strong influence on vegetation and on migrations of human populations in the past. Based on an improved database containing about 3000 modern pollen samples, the standard “Modern Analogue Technique” has been applied to five pollen sequences from the subalpine belt of the South-western Italian Alps (Laghi dell’Orgials, 2240 m, Lago delle Fate, 2130 m, Torbiera del Biecai, 1920 m, Rifugio Mondovì, 1760 m, Pian Marchisio, 1624 m) to provide quantitative climate estimates for the Lateglacial and Holocene periods. Consistent climate trends are reconstructed for the different sequences. Sites recorded in detail the climate variations when they were located at the limit of two ecotones. Sites above the tree line recorded lower temperature values and less important variations. Climate was cold and dry during the Oldest and Younger Dryas and close to present-day values during the Bølling/Allerød interstadial. At the beginning of the Holocene, climate changed to warmer and moister conditions; a high number of climate fluctuations are recorded at several sites. A climate optimum is recorded in the Atlantic period, which caused a development of fir above its present-day altitudinal distribution. Climatic differences recorded at the various sites are discussed taking into account the limits of the method.  相似文献   
43.
The application of computer technology has permitted more and more problems of dynamical astronomy to be solved more easily, quickly, and accurately. In this area, numerical integration is often very efficient, and sometimes essential. There is often, however, a temptation to choose numerical integration simply because it is the easiest way to attack the problem. Sometimes this works to the detriment of a satisfactory understanding of the physics of the problem under study. It is particularly the case for the free, or Eulerian, oscillations. The forces that create such a motion are not of gravitational origin and are not even conservative. The theory can only specify the frequencies of oscillation, not their amplitudes nor phases. The case is complicated when the free oscillations interact with gravitationally-forced oscillations, a situation that is almost inevitable, since nothing is isolated in the Universe. The first author has particularly studied this problem in the case of the rotation of the Moon, and published the first credible determinations of the lunar free libration. In this kind of problem, the observations have to be used and care must to be taken to create no spurious free librations in the results by using numerical integrations to describe the other related motions. A differential correction of the starting conditions to fit the observations does not necessarily give any valid information on the real free oscillation contained in the data. An analytical model is necessary, if the goal of the research is to understand the origins and characteristics of an Eulerian oscillation in such a system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号