首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   0篇
地球物理   21篇
地质学   25篇
海洋学   1篇
天文学   61篇
  2022年   1篇
  2020年   3篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   7篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   9篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1973年   2篇
  1972年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有108条查询结果,搜索用时 31 毫秒
71.
lCorrelation analysis applied to recordings of the magnetic field and velocity of the Sun as a star reveals oscillations close to 300 s. The power spectrum of these oscillations is discussed.  相似文献   
72.
In experiments that were regularly carried out in 1999–2002 with Pushchino radio telescopes (Russian Academy of Sciences), the study of the radial dependence of the scattering of radio emission from compact natural sources was extended to regions of circumsolar plasma farther from the Sun. Based on a large body of data, we show that, apart from the standard transonic acceleration region located at distances of 10–40 R from the Sun, there is a region of repeated acceleration at distances of 34–60 R attributable to the equality between the solar wind velocity and the Alfvénic velocity. The repetition in the trans-Alfvénic region of the characteristic features of the radial stream structure observed in the transonic region (the existence of a precursor, a narrow region of reduced scattering that precedes a wide region of enhanced scattering) suggests that the main characteristic features of the resonant acceleration of solar wind streams are preserved up to distances of the order of 60 R.  相似文献   
73.
Observations of the large-scale solar magnetic field (synoptic maps) and measurements of the magnetic field of the Sun as a star (the total magnetic field) are used to determine the dipole magnetic moment and direction of the dipole field for three successive solar cycles. Both the magnetic moment and its vertical and horizontal components vary regularly during the cycle, but never disappear completely. A wavelet analysis of the total magnetic field shows that the amplitude of the 27-day variations of this field is very closely related to the magnetic moment of the horizontal dipole. The reversal of the global dipole field corresponds to a change in the inclination of its axis and occurs in a series of steps lasting one to two years rather than continuously. Before the onset of the reversal, the dipole axis precesses relative to the solar rotational axis, then shifts in a meridianal plane, reaching very low latitudes, where a substantial shift in longitude then begins. These results are discussed in connection with helioseismological data indicating the existence of oscillations with a period of about 1.3 yr and properties of dynamo processes for the case of an inclined rotator.  相似文献   
74.
Cyclic variations of the mean semi-annual intensities I of the coronal green line 530.3 nm are compared with the mean semi-annual variations of the Wolf numbers W during the period of 1943–1999 (activity cycles 18–23). The values of I in the equatorial zone proved to correlate much better with the Wolf numbers in a following cycle than in a given one (the correlation coefficient r is 0.86 and 0.755, respectively). Such increase of the correlation coefficient with a shift by one cycle differs in different phases of the cycle, being the largest at the ascending branch. The regularities revealed make it possible to predict the behaviour of W in the following cycle on the basis of intensities of the coronal green line in the preceding cycle. We predict the maximum semi-annual W in cycle 23 to be 110–122 and the epoch of minimum between cycles 23 and 24 to take place at 2006–2007. A slow increase of I in the current cycle 23 permits us to forecast a low-Wolf-number cycle 24 with the maximum W50 at 2010–2011. A scheme is proposed on the permanent transformation of the coronal magnetic fields of different scales explaining the found phenomenon.  相似文献   
75.
Auto-correlation analysis was performed using digitized synoptic charts of photospheric magnetic fields for the past three solar activity cycles (1965–1994). The obtained correlograms were used to study the rotation and the zonal-sector structure of large-scale solar magnetic fields all over the observable region of heliolatitudes in various phases of solar activity. It is shown that the large-scale system of solar magnetic fields is rather complex and comprises at least three different systems. One is a global rigidly rotating system. It determines the cyclic variation of magnetic fields and is probably responsible for the behavior of magnetic fields in the polar zones. Another is a rigidly rotating 4-sector structure in the central (equatorial and mid-latitude) zone. The third is a differentially rotating system that determines the behavior of the LSSMF structure elements with a size of 30–60° and less. This one is the most noticeable in the central zone and absent in the polar zones. Various cyclic and rotation parameters of the three field structures are discussed.  相似文献   
76.
The energetical aspect of solar phenomena of different spatial and time scales has been studied with special attention to global magnetic fields. Cyclic regularities in the heliosphere are determined by energetics of global magnetic fields. The energy variation of global fields consists of a number of maxima and minima coinciding with reference points of the sunspot cycle. The correlations of a number of well-known indices in the heliosphere with Wolf numbers and with indices of energetics of the global magnetic field have been investigated. The results can be used to identify more exactly the reference points of the cycle.  相似文献   
77.
It is shown that the meridional drift of large-scale fields starts in the equatorial zone and continues over 15–16 yrs (16–17 according to another estimate), i.e., during three fourths of the 22-year cycle. There is an abrupt retardation of the drift at latitudes of 30°–50°, and a stagnation region where the drift rate does not exceed several meters per second arises. The drift becomes rapid again at higher latitudes. The stagnation region coincides with the area in which the radial gradient of the rotational velocity is close to zero in the convective zone. This drift is compared with helio-seismological data on the rotation in the convective zone. A model taking into account some elements of dynamo theory is proposed.  相似文献   
78.
It is shown that, when all components of the large-scale solar magnetic field are longitudinally averaged, the N polarity and the eastward transverse component of the B φ field associated with both local and large-scale fields over the Northern hemisphere are somewhat stronger and occupy a smaller area during odd cycles than does the field of opposite polarity. This behavior is reversed for even cycles or the Southern hemisphere. The regular Hale law is a particular form of the above rule. The nature of this asymmetry seems to be rooted in the dynamo mechanism itself, and should be important for fields on any scale.  相似文献   
79.
The sector structure and variations in the large-scale magnetic field of the Sun are studied in detail using solar magnetic-field data taken over a long time interval (1915–1990). The two-sector and four-sector structures are independent entities (i.e., their cross correlation is very small), and they are manifest in different ways during the main phases of the 11-year cycle. The contribution of the two-sector structure increases toward the cycle minimum, whereas that of the four-sector structure is larger near the maximum. The magnetic-field sources determining the two-sector structure are localized near the bottom of the convection zone. The well-known 2–3-year quasi-periodic oscillations are primarily associated with the four-sector structure. The variations in the rotational characteristics of these structures have a period of 55–60 years. The results obtained are compared with the latest helioseismology data.  相似文献   
80.
The relation of the solar cycle period and its amplitude is a complex problem as there is no direct correlation between these two quantities. Nevertheless, the period of the cycle is of important influence to the Earth's climate, which has been noted by many authors. The present authors make an attempt to analyse the solar indices data taking into account recent developments of the asymptotic theory of the solar dynamo. The use of the WKB method enables us to estimate the amplitude and the period of the cycle versus dynamo wave parameters in the framework of the nonlinear development of the one-dimensional Parker migratory dynamo. These estimates link the period T and the amplitude a with dynamo number D and thickness of the generation layer of the solar convective zone h. As previous authors, we have not revealed any considerable correlation between the above quantities calculated in the usual way. However, we have found some similar dependences with good confidence using running cycle periods. We have noticed statistically significant dependences between the Wolf numbers and the running period of the magnetic cycle, as well as between maximum sunspot number and duration of the phase of growth of each sunspot cycle. The latter one supports asymptotic estimates of the nonlinear dynamo wave suggested earlier. These dependences may be useful for understanding the mechanism of the solar dynamo wave and prediction of the average maximum amplitude of solar cycles. Besides that, we have noted that the maximum amplitude of the cycle and the temporal derivative of the monthly Wolf numbers at the very beginning of the phase of growth of the cycle have high correlation coefficient of order 0.95. The link between Wolf number data and their derivative taken with a time shift enabled us to predict the dynamics of the sunspot activity. For the current cycle 23 this yields Wolf numbers of order 107±7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号