首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地质学   14篇
  2019年   1篇
  2018年   2篇
  2016年   6篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2009年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
11.
Petrological and geochemical studies on some volcanic and sub-volcanic rocks from the Lower Benue rift indicate that they are basalts, basaltic and doleritic sills, trachybasalt and trachyte which generally belong to the alkali basalt series. The alkaline affinity is clearly evident in both their normative and modal mineral compositions, as well as their chemical compositions. The generally high fractionation indices [(La/Yb)N] are 7.06 to 17.65 for the basaltic rocks and 23.59 to 135. 35 for the trachytic rocks, against low values commonly seen in subalkaline (tholeiitic) series, with strong enrichments in the incompatible elements. All this strongly supports their alkaline affinity. The basaltic rocks are generally fine-grained and porphyritic, consisting of phenocrysts of clinopyroxene and olivine in the groundmass of the same minerals together with plagioclase. The clinopyroxene is either diopside or clinoenstatite. The trachyte consists of oligoclase, orthoclase, biotite, quartz and exhibits typical trachytic, flow structure. The basaltic and doleritic sills are commonly altered, with calcite and epidote as common alteration prod-ucts. This alteration, which is reflected in the erratic behaviour of K2O, MnO and P2O5 on Harker variation diagrams, high values of LOI, strong depletions in the more mobile LILE (Rb, K, Ba and Sr) and high Th/Ta ratios, is attributed to the effects of an aqueous fluid phase and crustal contamination. On the whole, the mineralogical, as well as major-, trace-elements and REE data suggest that the rocks are co-genetic and most likely derived from differentiation of an alkali olivine-basalt magma, generating through variable low degrees of partial melting of probably an enriched lithospheric (upper) mantle following an asthenospheric uplift (mantle plume or intumescence) with HIMU signa-tures in a within-plate continental rift tectonic setting. This corroborates earlier results obtained for the intrusive rocks in the region.  相似文献   
12.
The task involved in the interpretation of Vertical Electrical Sounding (VES) data is how to get unique results in the absence/limited number of borehole information, which is usually limited to information on the spot. Geological and geochemical mapping of electrical properties are usually limited to direct observations on the surface and therefore, conclusions and extrapolations that can be drawn about the system electrical characteristics and possible underlying structures may be masked as geology changes with positions. The electrical resistivity study pedotransfer functions (PTFs) have been linked with the electromagnetic (EM) resolved PTFs at chosen frequencies of skin/penetration depth corresponding to the VES resolved investigation depth in order to determine the local geological attributes of hydrogeological repository in the coastal formation dominated with fine sand. The illustrative application of effective skin depth depicts that effective skin depth has direct relation with the EM response of the local source over the layered earth and thus, can be linked to the direct current earth response functions as an aid for estimating the optimum depth and electrical parameters through comparative analysis. Though the VES and EM resolved depths of investigation at appropriate effective and theoretical frequencies have wide gaps, diagnostic relations characterising the subsurface depth of interest have been established. The determining factors of skin effect have been found to include frequency/period, resistivity/conductivity, absorption/attenuation coefficient and energy loss factor. The novel diagnostic relations and their corresponding constants between 1-D resistivity data and EM skin depth are robust PTFs necessary for checking the accuracy associated with the non-unique interpretations that characterise the 1-D resistivity data, mostly when lithostratigraphic data are not available.  相似文献   
13.
Aeromagnetic data of Idah area (sheet 267), north-central Nigeria, has been interpreted by applying source parameter imaging (SPI), Euler deconvolution and forward and inverse modeling methods. Quantitatively, depth estimates obtained by employing SPI have shown minimum to maximum depth to anomalous source at 57.591m to 664.841m. Applying Euler deconvolution for various structural indices (SI), the depth obtained for SI=1, ranges from 5.6m to 197.6m, 22.0m to 204.7m for SI=2 and for SI=3, the depth to magnetic source obtained ranges from 38.0m to 205.5m. The results from forward and inverse modeling for profiles 1, 2, 3, 4 and 5 indicate depths of 95.6m, 103.9m, 477.5m, 1239.8m and 76.8m respectively. From the results of susceptibility values; the result obtained from profile 1 with susceptibility value of -0.0175 suggests that the body is associated with non-magnetic sedimentary deposits. Profile 2 with a susceptibility value of 0.07 is typical of basic igneous rock; gabbro and basalts. The results for profiles 3, 4 and 5 having susceptibility values of 0.01 to 0.013 are typical of intermediate igneous rocks; diorite and andesite.  相似文献   
14.
Airborne geophysical (aeromagnetic and gravity) data of Nsukka area was interpreted qualitatively and quantitatively with the aim of determining the susceptibilities of rock types, depth/mass of the anomalous bodies, possible cause of the anomalies and type of mineralization prevalent in the area. The estimated depths from forward and inverse modeling of aeromagnetic data for profiles 1, 2, 3, 4 and 5 were 1200m, 1644m, 1972m, 2193m and 2285m respectively. The respective susceptibility values were 0.0031, 0.0073, 1.4493, 0.0069 and 0.0016. These indicate dominance of iron rich minerals like limonite, hematite, pyrrhotite, and pyrite and forms lateritic caps on sandstones. SPI depth result ranges from 151.6m minimum (shallow magnetic bodies) to 3082.7 m maximum (deep lying magnetic bodies). Euler depths for the four different structural index (SI = 0.5, 1, 2, 3) ranges from 7.99 to 128.93m which are depths of shallow magnetic sources resulting from lateritic bodies in the outcrops in the study area. From the gravity data interpretation, Euler depth estimation reveals that depth to anomalous bodies ranges from 89.13 to 2296.92m. Density of the causative body obtained from modeling results for profile 1 was 1498kg/m3, which is in the range of clay material and the depth was about 923m. From models 2, 4 and 5, the densities of the causative bodies were 3523, 4127 and 3707kg/m3, while depths to the surface were about 604, 815 and 1893m respectively. These density ranges correspond to that of ironstone. From model three, the density of causative body obtained was 2508kg/m3, located at a depth of about 268m below the surface. This work has shown that Nsukka area is underlain by thick strata of shales, sandstones and ironstones, which together are suitable for ceramic production, and sufficiently thick sediments suitable for hydrocarbon accumulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号