首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
  国内免费   1篇
地质学   31篇
海洋学   1篇
  2018年   3篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   6篇
  2008年   7篇
  2007年   5篇
  2006年   2篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
11.
This work reports the first discovery of sapphirine-bearing mineral parageneses in granulites of the Angara–Kan block, information on the mineral assemblage of rocks, and the mineral composition. Based on mineral geothermometers utilizing alumina content in orthopyroxene, reconstruction of the composition of ternary feldspar, and the titanium content in zircon, it was revealed that the peak temperatures of metamorphism reached 1100°C, after which the rocks underwent cooling under sub-isobaric conditions. It is assumed that the pulse of ultra-high-temperature metamorphism correlates with processes of extension and intraplate magmatism during the age interval of 1.78–1.75 Ga.  相似文献   
12.
13.
In the northwestern part of the Sharyzhalgai uplift of the Siberian craton (Bulun block), the earliest sialic crust (grey-gneiss complex) is composed of plagiogneisses, their migmatized varieties, and subordinate plagiogranitoids. The petrochemical, trace-element, and Sm-Nd isotope compositions of rocks were studied, and U-Pb dating of zircons (SHRIMP II) was performed. Plagiogneisses and plagiogranitoids of trondhjemite and, more seldom, tonalite compositions are predominant; their compositions are typical of rocks of Archean tonalite-trondhjemitegranodiorite (TTG) complexes (Al2O3 ≥ 15%, Mg# = 28–38, (La/Yb)n = 23–66, Sr/Y = 27–135, Eu/Eu? = 0.7–1.1). Plagiogneisses of meta-andesite-rhyodacite association are subordinate (SiO2 = 59–69%, (La/Yb)n = 7–32, Sr/Y = 11–24, Eu/Eu? = 0.5–0.7). Cathodoluminescent study of zircons revealed “magmatic cores” and metamorphic rims; most of the rims differ from the cores in U and Th contents and low or greatly varying Th/U ratios. In migmatized plagiogneisses of trondhjemite composition, two zircon generations of different morphologies have been recognized. The protoliths of the grey-gneiss complex rocks formed in the Paleoarchean as a result of two discrete magmatic events, at ~3.3 and 3.25 Ga, and their metamorphism and migmatization took place at ~3.2 Ga. The isotopic and geochemical features of rocks evidence that the primary melts were produced mainly through the melting of metabasic sources at different depths of the thickened crust. Plagiogneisses of trondhjemite composition apparently resulted from magma generation involving ancient sialic material.  相似文献   
14.
The Onot and Bulun terranes are confined to the Sharyzhalgai Uplift in the southwestern margin of the Siberian craton. They consist of alternating blocks and nappes of Paleoarchean tonalite-trondhjemite-granodiorite complex and supracrustal metasedimentary-volcanogenic rocks of greenstone belts (GSB). The lower part of the Onot GSB is made up of a bimodal association of aporhyolite microgneisses with subordinate amphibolites, while the upper part consists of amphibolites associated with banded iron formation, metapelites, dolomitic marbles, and magnesites. The Urik GSB in the Bulun block comprises three rock associations: (1) garnet amphibolites and amphibolites alternating with kyanite-bearing mica schists and quartzite schists; (2) garnet-bearing biotite and amphibole crystalline schists with tectonic lenses of garnet amphibolites; (3) biotite and amphibole-biotite orthogneisses and biotite plagiogneisses. The microgneisses (metarhyolitoids) of the Onot belt are correlated with within-plate volcanic rocks and A-type granites. The composition of the amphibolites corresponds to high-Mg low-Ti tholeiitic basalts. The formation of metavolcanic rocks of the Onot GSB was related to the rifting of the Paleoarchean continental crust, which is supported by the formation of felsic metavolcanic rocks from an ancient tonalite source and by the geochemical signatures of crustal contamination of metabasalts. The amphibolites of the Urik GSB are subdivided into three petrogeochemical types. The first and second types correspond to high-and low-Mg tholeiitic basalts and have practically flat multielement patterns. The amphibolites of the third type correspond to subalkaline leucobasalts. Two types of orthogneisses are comparable with intermediate-acid volcanic rocks of the andesite-dacite and adakite series. In terms of geochemistry, the metamafic volcanic rocks of the Urik GSB represent the rocks of the oceanic crust. Oceanic settings of their formation are confirmed by an association of metavolcanic rocks with abyssal distal siliceous-argillaceous deposits. The formation of two types of intermediate-acid metavolcanic rocks of andesite-dacite and adakite associations, as well as garnet-bearing paraschists, was presumably related to subduction settings.  相似文献   
15.
The paper presents data on high-grade silicate–carbonate rocks (calciphyres) from the Irkut block (Sharyzhalgai uplift, southwestern Siberian craton). Their origin and age were determined from the rock characteristics, U–Pb dating, REE content, and Hf isotope composition of zircon. The calciphyres occur both as independent section fragments and as interbeds within Paleoproterozoic garnet-bearing and high-alumina (cordierite- and sillimanite-bearing) gneisses. They were produced by metamorphism of terrigenous-carbonate sediments. The terrigenous sediments range in maturity from arenites and wackes to argillaceous rocks; this is consistent with the reconstruction of the sedimentary protoliths of paragneisses, which are predominant in the metasedimentary rocks. The petrogeochemical features of the calciphyres, their LREE enrichment relative to “pure” carbonate rocks, and a distinct Eu anomaly were inherited from the terrigenous component of calc-silicate sediments. The Nd model age (2.4–2.7 Ga) of the calciphyres and the value THf(DM-2st) = 2.5–3.0 Ga for zircon from these rocks indicate that carbonate accumulation was accompanied by the supply of terrigenous material, which formed during the erosion of Archean and Paleoproterozoic crust. Zircon from the calciphyres is similar to metamorphic zircon in REE patterns and Th/U ratios. It might have been of detrital origin and then recrystallized during high-temperature metamorphism. Terrigenous-silicate rocks were metamorphosed at ca. 1.87 Ga. This is close to the previous age estimates for the terrigenous rocks metamorphism (1.85–1.86 Ga) and the age of baddeleyite from apocarbonate metasomatic rocks (1.86 Ga).  相似文献   
16.
Three stages of Early Proterozoic granitoid magmatism were distinguished in the southwestern margin of the Siberian craton: (1) syncollisional, including the formation of migmatites and granites in the border zone of the Tarak massif; (2) postorogenic, postcollisional, comprising numerous granitoid plutons of diverse composition; and (3) intraplate, corresponding to the development of potassic granitoids in the Podporog massif. Rocks of three petrological and geochemical types (S, I, and A) were found in the granitoid massifs. The S-type granites are characterized by the presence of aluminous minerals (garnet and cordierite), and their trace element distribution patterns and Nd isotopic parameters are similar to those of the country paragneisses and migmatites. Their formation was related to melting under varying H2O activity of aluminous and garnet—biotite gneisses at P ≥ 5 kbar and T < 850°C with a variable degree of melt separation from the residual phases. The I-type tonalites and dioritoids show low relative iron content, high concentrations of CaO and Sr, fractionated REE distribution patterns with (La/Yb)n = 11–42, and variable depletion of heavy REE. Their parental melts were derived at T ≥ 850°C and P > 10 and P < 10 kbar, respectively. According to isotopic data, their formation was related to melting of a Late Archean crustal (tonalite-diorite-gneiss) source with a contribution of juvenile material ranging from 25–55% (tonalites of the Podporog massif) to 50–70% (dioritoids of the Uda pluton). The most common A-type granitoids show high relative iron content; high concentration of high-field-strength elements, Th, and light and heavy REE; and a distinct negative Eu anomaly. Their primary melts were derived at low H2O activity and T ≥ 950°C. The Nd isotopic composition of the granitoids suggests contributions to the magma formation processes from ancient (Early and Late Archean) crustal (tonalite-diorite-gneiss) sources and a juvenile mantle material. The contribution of the latter increases from 0–35% in the granites of the Podporog and Tarak massifs to 40–50% for the rocks of the Uda and Shumikha plutons. The main factors responsible for the diversity of petrological and geochemical types of granitoids in collisional environments are the existence of various fertile sources in the section of the thickened crust of the collisional orogen, variations in magma generation conditions $(\alpha _{H_2 O} , T, and P)$ during sequential stages of granite formation, and the varying fraction of juvenile mantle material in the source region of granitoid melts.  相似文献   
17.
18.
Major, trace element, and Sm-Nd isotope data are presented for the garnet-biotite and cordierite-garnet-biotite gneisses from the Early Precambrian granulite complex of the Irkut Block (Sharyzhalgai Uplift, Siberian Craton). The garnet-biotite and cordierite-bearing gneisses of the Irkut Block were formed owing to the granulite metamorphism of metaterrigenous rocks. The chemical index of weathering and the content of clayey (pelitic) components in the normative mineral composition increase from the garnet-biotite gneisses to the cordierite-bearing gneisses, thus reflecting the maturation degree of initial sediments. Protoliths of the studied paragneisses correspond to a rock series ranging from the graywacke siltstones to clayey rocks. The trace and rare-earth element distribution indicates that the terrigenous material of the paragneisses was derived from felsic and mafic provenance. Increase in contents of Fe, Ti, Cr, Ni, and Sc and the Cr/Th ratio and decrease in the La/Sc ratio from the garnet-biotite to the cordierite-bearing gneisses reflect growth of the abundance of mafic rocks in the provenance. Potential sources of the detrital material were intermediate-felsic and mafic volcanic rocks (orthogneisses and basic crystalline schists) of the Irkut Block. The paragneisses show a distinct negative Eu anomaly (Eu/Eu* = 0.38–0.85), which suggests the input of crustal melting products, such as the potassium granites. A wide range of model Nd age (TNd(DM) = 2.4–3.1 Ga) of the paragneisses indicates the Archean to Early Paleoproterozoic age of their protoliths. The complex of isotopic, geochemical, and geochronological data, as well as the character of association of metaterrigenous rocks (mature pelites and carbonate rocks included), implies that sedimentation was separated in time from volcanism. The sedimentation was preceded by metamorphism, granite formation, and tectonic stabilization of the Irkut Block crust.  相似文献   
19.
20.
In this paper, we present data on major and trace elements in highly metamorphosed mafic rocks from the granulite-gneiss complex of the Angara-Kan block (southwestern Siberian craton), identify igneous protoliths of the metabasites, and assess the mobility of elements during metamorphism. Two types of rocks with different geologic relations and compositions were recognized. Garnet-bearing two-pyroxene granulites (Cpx + Pl + Grt + Opx) occur as sheet- and boudin-like bodies, which were folded and deformed with their host paragneisses. Dikes, which in most cases underwent only brittle deformation, are composed of metabasites characterized by the assemblage Cpx + Hbl + Pl + Grt. The major element compositions of igneous protoliths for the mafic granulites and metabasite dykes correspond to variously differentiated basaltic magmas. The protoliths of the metabasites are depleted in K2O, LILE, Zr, Nb, and LREE and were derived from a depleted mantle source. The major and trace element compositions of the dike metabasites are similar to those of low-K tholeiitic basalts of oceanic island arcs. Continental intraplate basalts derived from an enriched mantle source are possible igneous protoliths for the mafic granulites enriched in Ba, LREE, Nb, Ta, Zr, and Hf. It is assumed that lower Rb, Th, and U contents in the mafic granulites compared with continental flood basalts, high K/Rb and La/Th, and moderate Th/U ratios reflect the loss of Rb, Th and U during granulite-facies metamorphism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号