首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42766篇
  免费   552篇
  国内免费   169篇
测绘学   1229篇
大气科学   2959篇
地球物理   8913篇
地质学   18350篇
海洋学   2990篇
天文学   7347篇
综合类   248篇
自然地理   1451篇
  2022年   213篇
  2021年   368篇
  2020年   357篇
  2019年   352篇
  2018年   3811篇
  2017年   3516篇
  2016年   2543篇
  2015年   688篇
  2014年   876篇
  2013年   1165篇
  2012年   1995篇
  2011年   3653篇
  2010年   3411篇
  2009年   3578篇
  2008年   2850篇
  2007年   3438篇
  2006年   797篇
  2005年   981篇
  2004年   877篇
  2003年   931篇
  2002年   700篇
  2001年   432篇
  2000年   424篇
  1999年   269篇
  1998年   315篇
  1997年   295篇
  1996年   194篇
  1995年   232篇
  1994年   219篇
  1993年   173篇
  1992年   150篇
  1991年   169篇
  1990年   192篇
  1989年   140篇
  1988年   133篇
  1987年   155篇
  1986年   136篇
  1985年   173篇
  1984年   159篇
  1983年   172篇
  1982年   150篇
  1981年   157篇
  1980年   175篇
  1979年   145篇
  1978年   150篇
  1977年   127篇
  1976年   108篇
  1975年   119篇
  1974年   111篇
  1973年   129篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Pegmatite dikes bearing andalusite crosscut foliation S2 in Alpujarride gneisses and schists. Post‐S2 andalusite is transposed by a foliation S3, defined by fibrolite, which affects the dikes. The dikes represent highly differentiated granitic magmas with low REE and Zr contents and a positive Eu anomaly. U‐Pb SHRIMP dating of magmatic zircons provided Pan‐African ages (cores) and late Variscan ages (rims). However, U‐rich rims also provided metamorphic Alpine ages, supporting a polyorogenic tectonometamorphic history for pre‐Mesozoic Alpujarride rocks.  相似文献   
992.
993.
Large Plinian eruptions from Hekla volcano, Iceland, produce compositionally zoned tephra used as key markers in tephrochronology. However, spatial variations in chemical composition of a tephra layer may complicate its identification. An example is the 5950–6180 cal a bp Hekla Ö tephra layer, which shows compositional spread from rhyolite, dacite and andesite to basalt. In soil sections north of Hekla, the SiO2 content of the tephra glass reaches 76 wt% in the lowest unit of the Hekla Ö deposit and decreases to 62–63 wt% in the uppermost unit. Intermingled within the whole deposit are basalt tephra grains having 46–47 wt% SiO2. The composition of the basalt glass includes primitive basalt and a more evolved basalt (MgO >6 and <6 wt%, respectively). Together with literature data, the Hekla Ö tephra and the so-called T-Tephra/Hekla-T are most likely from contemporaneous eruptions of different vents on the Hekla volcanic system, forming a single important marker tephra (Hekla ÖT) deposited over 80% of Iceland. Identification is complicated by its spatial compositional heterogeneity, such as systematic decrease in SiO2 content from the east to the west of Hekla volcano. Consequently, an individual tephra layer from a large explosive eruption can have different composition at different locations. © 2020 John Wiley & Sons, Ltd.  相似文献   
994.
The behavior of granular materials is known to depend on its loose or dense nature, which in turns depends both on density and confining pressure. Many models developed in the past require the use of different sets of constitutive parameters for the same material under different confining pressures. The purpose of this paper is to extend a basic generalized plasticity model for sands proposed by Pastor, Zienkiewicz and Chan by modifying the main ingredients of the model flow—rule, loading–unloading discriminating direction and plastic modulus—to include a dependency on the state parameter. The proposed model is tested against the available experimental data on three different sands, using for each of them a single set of material parameters, finding a reasonably good agreement between experiments and predictions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
995.
New insights on the Paleozoic evolution of the continental crust in the North Patagonian Massif are presented based on the analysis of Sm–Nd systematics. New evidence is presented to constrain tectonic models for the origin of Patagonia and its relations with the South American crustal blocks. Geologic, isotopic and tectonic characterization of the North Patagonian Massif and comparison of the Nd parameters lead us to conclude that: (1) The North Patagonian Massif is a crustal block with bulk crustal average ages between 2.1 and 1.6 Ga TDM (Nd) and (2) At least three metamorphic episodes could be identified in the Paleozoic rocks of the North Patagonian Massif. In the northeastern corner, Famatinian metamorphism is widely identified. However field and petrographic evidence indicate a Middle to Late Cambrian metamorphism pre-dating the emplacement of the ca. 475 Ma granitoids. In the southwestern area, are apparent 425–420 Ma (?) and 380–360 Ma metamorphic peaks. The latter episode might have resulted from the collision of the Antonia terrane; and (3) Early Paleozoic magmatism in the northeastern area is coeval with the Famatinian arc. Nd isotopic compositions reveal that Ordovician magmatism was associated with attenuated crust. On the southwestern border, the first magmatic recycling record is Devonian. Nd data shows a step by step melting of different levels of the continental crust in the Late Palaeozoic. Between 330 and 295 Ma magmatism was likely the product of a crustal source with an average 1.5 Ga TDM (Nd). Widespread magmatism represented by the 295–260 Ma granitoids involved a lower crustal mafic source, and continued with massive shallower-acid plutono volcanic complexes which might have recycled an upper crustal segment of the Proterozoic continental basement, resulting in a more felsic crust until the Triassic. (4) Sm–Nd parameters and detrital zircon age patterns of Early Paleozoic (meta)-sedimentary rocks from the North Patagonian Massif and those from the neighboring blocks, suggest crustal continuity between Eastern Sierras Pampeanas, southern Arequipa-Antofalla and the northeastern sector of the North Patagonian Massif by the Early Paleozoic. This evidence suggests that, at least, this corner of the North Patagonian Massif is not allochthonous to Gondwana. A Late Paleozoic frontal collision with the southwestern margin of Gondwana can be reconcilied in a para-autochthonous model including a rifting event from a similar or neighbouring position to its post-collision location. Possible Proterozoic or Early Paleozoic connections of the NPM with the Kalahari craton or the western Antartic blocks should be investigated.  相似文献   
996.
997.
In order to evaluate analytically the ITZ volume fraction (fITZ) in concrete, a three phase model is proposed for the random concrete microstructure using the Voronoï tessellation. Within this model, the ITZ local thickness is a statistical variable depending on the local paste thickness available between each couple of neighbouring aggregates. The fITZ is found to not exceed 7% for typical concretes. Then, the concrete Young's modulus is predicted analytically using a four‐phase generalized self consistent model but in which the proposed fITZ is considered. It is found that the concrete Young's modulus increases when increasing aggregates volume fraction, aggregates maximum size and the proportion of coarse aggregates and when decreasing the ITZ thickness and Young's modulus. Finally, the validity of the proposed model is discussed based on a comparison between its predictions and three sets of experimental results related to normal and high strength concretes taken from literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
998.
999.
We report the first finding of diamond and moissanite in metasedimentary crustal rocks of Pohorje Mountains (Slovenia) in the Austroalpine ultrahigh‐pressure (UHP) metamorphic terrane of the Eastern Alps. Microscopic observations and Raman spectroscopy show that diamond occurs in situ as inclusions in garnet, being heterogeneously distributed. Under the optical microscope, diamond‐bearing inclusions are of cuboidal to rounded shape and of pinkish, yellow to brownish colour. The Raman spectra of the investigated diamond show a sharp, first order peak of sp3‐bonded carbon, in most cases centred between 1332 and 1330 cm?1, with a full width at half maximum between 3 and 5 cm?1. Several spectra show Raman bands typical for disordered graphitic (sp2‐bonded) carbon. Detailed observations show that diamond occurs either as a monomineralic, single‐crystal inclusion or it is associated with SiC (moissanite), CO2 and CH4 in polyphase inclusions. This rare record of diamond occurring with moissanite as fluid‐inclusion daughter minerals implies the crystallization of diamond and moissanite from a supercritical fluid at reducing conditions. Thermodynamic modelling suggests that diamond‐bearing gneisses attained P–T conditions of ≥3.5 GPa and 800–850 °C, similar to eclogites and garnet peridotites. We argue that diamond formed when carbonaceous sediment underwent UHP metamorphism at mantle depth exceeding 100 km during continental subduction in the Late Cretaceous (c. 95–92 Ma). The finding of diamond confirms UHP metamorphism in the Pohorje Mountains, the most deeply subducted part of Austroalpine units.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号