首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76039篇
  免费   907篇
  国内免费   1266篇
测绘学   2610篇
大气科学   5338篇
地球物理   14808篇
地质学   29690篇
海洋学   5640篇
天文学   14121篇
综合类   2280篇
自然地理   3725篇
  2022年   327篇
  2021年   532篇
  2020年   581篇
  2019年   613篇
  2018年   5975篇
  2017年   5160篇
  2016年   3991篇
  2015年   1013篇
  2014年   1529篇
  2013年   2650篇
  2012年   2560篇
  2011年   4710篇
  2010年   3874篇
  2009年   4826篇
  2008年   4037篇
  2007年   4470篇
  2006年   2108篇
  2005年   1705篇
  2004年   1884篇
  2003年   1791篇
  2002年   1570篇
  2001年   1230篇
  2000年   1212篇
  1999年   972篇
  1998年   1021篇
  1997年   955篇
  1996年   783篇
  1995年   801篇
  1994年   724篇
  1993年   620篇
  1992年   558篇
  1991年   585篇
  1990年   663篇
  1989年   555篇
  1988年   519篇
  1987年   666篇
  1986年   552篇
  1985年   706篇
  1984年   768篇
  1983年   747篇
  1982年   645篇
  1981年   687篇
  1980年   598篇
  1979年   550篇
  1978年   546篇
  1977年   496篇
  1976年   474篇
  1975年   469篇
  1974年   457篇
  1973年   481篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
The southeastern Bering Sea shelf ecosystem is an important fishing ground for fin- and shellfish, and is the summer foraging grounds for many planktivorous seabirds and marine mammals. In 1997 and 1998, Northern Hemisphere climate anomalies affected the physical and biological environment of the southeastern Bering Sea shelf. The resulting anomalous conditions provided a valuable opportunity to examine how longer-term climate change might affect this productive ecosystem. We compared historical and recent zooplankton biomass and species composition data for the southeastern Bering Sea shelf to examine whether or not there was a response to the atmosphere–ocean–ice anomalies of 1997 and 1998. Summer zooplankton biomass (1954–1994) over the southeastern shelf did not exhibit a decline as previously reported for oceanic stations. In addition, zooplankton biomass in 1997 and 1998 was not appreciably different from other years in the time series. Spring concentrations of numerically abundant copepods (Acartia spp., Calanus marshallae, and Pseudocalanus spp.), however, were significantly higher during 1994–1998 than 1980–1981; spring concentrations of Metridia pacifica and Neocalanus spp. were not consistently different between the two time periods. Neocalanus spp. was the only taxon to have consistent differences in stage composition between the two time periods—CV copepodites were much more prevalent in May of the 1990s than early 1980s. Since relatively high zooplankton concentrations were observed prior to 1997, we do not attribute the high concentrations observed in the summers of 1997 and 1998 directly to the acute climate anomalies. With the present data it is not possible to distinguish between increased production (control from below) and decreased predation (control from above) to explain the recent increase in concentrations of the species examined.  相似文献   
922.
923.
An analysis of published and original data on the meiobenthos abundance in the depth interval from 100 to 9807 m (in total, 665 records, 445 of them obtained for depths exceeding 1000 m) revealed general regularities in its distribution. The influence of the sampling and data processing methods on the quantitative estimates of the meiobenthos abundance is considered to demonstrate changes in the proportions of the main meiobenthic taxa at different depths and to characterize latitudinal changes in the meiobenthos abundance. The dependence of the abundance of free-living nematodes, the most abundant group of metazoan meiobenthos, on trophic conditions is analyzed. No significant differences in the meiobenthos abundance in the samples obtained by box-and multicorers are established. It is shown that the share of nematodes in metazoan meiobenthos communities increases with the depth. In temperate latitudes, a distinct maximum in the population density confined to depths exceeding 1 km is observed. The quantitative distribution of the meiobenthos at the depths gradient is controlled by the bottom macrotopography and trophic conditions.  相似文献   
924.
The distribution and geochemical composition of suspended-particulate matter (SPM) in the East China Sea (ECS) were investigated during the summer period of high continental runoff to elucidate SPM sources, distribution and cross-shelf transport. The spatial variability of SPM distribution (0.3–6.5 mg l−1) and geochemical composition (POC, Al, Si, Fe, Mn, Ca, Mg and K) in the ECS was pronounced during summer when the continental fluxes of freshwater and terrestrial materials were highest during the year. Under the influences of Changjiang runoff, Kuroshio intrusion, surface production and bottom resuspension, the distribution generally showed strong gradients decreasing seaward for both biogenic and lithogenic materials. Particulate organic carbon was enriched in surface water (mean ∼18%) due to the influence of biological productivity, and was diluted by resuspended and/or laterally-transported materials in bottom water (mean 9.4%). The abundance of lithogenic elements (Al, Si, Fe, Mn) increased toward the bottom, and the distribution correlations were highly significant. Particulate CaCO3 distribution provided evidence that the SPM of the bottom water in the northern part of the study area was likely mixed with sediments originally derived from Huanghe. A distinct benthic nepheloid layer (BNL) was present in all seaward transects of the ECS shelf. Sediment resuspension may be caused by tidal fluctuation and other forcing and be regarded as the principal agent in the formation of BNL. This BNL was likely responsible for the transport of biogenic and lithogenic particles across or along the ECS shelf. Total inventories of SPM, POC and PN are 46, 2.8 and 0.4 Tg, respectively, measured over the total area of 0.45 × 106 km2 of the ECS shelf. Their mean residence times are about 27, 13 and 11 days, respectively. The inventory of SPM in the water column was higher in the northernmost and southernmost transects and lower in the middle transects, reflecting the influences of terrestrial inputs from Changjiang and/or resuspended materials from Huanghe deposits in the north and perhaps from Minjiang and/or Taiwan’s rivers in the south. The distribution and transport patterns of SPM and geochemical elements strongly indicate that continental sources and cross-shelf transport modulate ECS particulate matter in summer.  相似文献   
925.
926.
A sediment gravity flow descended through the axis of Monterey Canyon on 20 December 2001 at 13:35 Pacific standard time. The timing of this event is documented by a current-meter package which recorded an 11.9-dbar pressure increase in less than 10 min and was found 550 m down-canyon from its deployment site, buried completely within a >70-cm-thick gravity flow deposit. This event is believed to have started in less than 290 m of water because an instrument at this location was also lost at the same time. A 178-cm core collected after the event from the axis of the canyon at 1,297-m water depth contained fresh, greenish, chlorophyll-rich organic material at 32-cm sub-bottom depth, suggesting the event extended to this water depth. The only trigger identified for this mass movement event appears to be moderate sea and surf conditions. Thus, gravity flow events of this magnitude do not require an exceptional triggering event.  相似文献   
927.
Transport of warm, nutrient-rich Circumpolar Deep Water (CDW) onto Antarctic continental shelves and coastal seas has important effects on physical and biological processes. The present study investigates the locations of this transport and its dynamics in the Ross Sea with a high-resolution three-dimensional numerical model. The model circulation is forced by daily wind stress along with heat and salt fluxes calculated from atmospheric climatologies by bulk formulae. All surface fluxes are modified by an imposed climatological ice cover. Waters under the Ross Ice Shelf are not included explicitly, but their effect on temperature and salinity is imposed in a buffer zone at the southern end of the model domain. A simple nutrient uptake is calculated based on the climatological chlorophyll distribution and Monod uptake kinetics.Model circulation is strongly affected by bottom topography, due to weak stratification, and agrees with schematics of the general flow and long-term current measurements except near the southern boundary. The sea-surface temperature is similar to satellite estimates except that the warmest simulated temperatures are slightly higher than observations. There is a significant correlation between the curvature of the shelf break and the transport across the shelf break. A momentum term balance shows that momentum advection helps to force flow across the shelf break in specific locations due to the curvature of the bathymetry (that is, the isobaths curve in front of the flow). For the model to create a strong intrusion of CDW onto the shelf, it appears two mechanisms are necessary. First, CDW is driven onto the shelf at least partially due to momentum advection and the curvature of the shelf break; then, the general circulation on the shelf takes the CDW into the interior.  相似文献   
928.
929.
A sediment gravity flow descended through the axis of Monterey Canyon on 20 December 2001 at 13:35 Pacific standard time. The timing of this event is documented by a current-meter package which recorded an 11.9-dbar pressure increase in less than 10 min and was found 550 m down-canyon from its deployment site, buried completely within a >70-cm-thick gravity flow deposit. This event is believed to have started in less than 290 m of water because an instrument at this location was also lost at the same time. A 178-cm core collected after the event from the axis of the canyon at 1,297-m water depth contained fresh, greenish, chlorophyll-rich organic material at 32-cm sub-bottom depth, suggesting the event extended to this water depth. The only trigger identified for this mass movement event appears to be moderate sea and surf conditions. Thus, gravity flow events of this magnitude do not require an exceptional triggering event.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号