Natural Hazards - The seismically induced ground failure is defined as any earthquake-generated process that leads to deformations within a soil medium, which in turn results in permanent... 相似文献
A study of the abundant and undescribed isolated and associated bones and teeth from the La Amarga Formation (Barremian of Neuquén, Argentina) permitted the recognition of additional clades of sauropod dinosaurs: basal titanosauriforms, both basal and derived titanosaurs, and rebbachisauroid diplodocoids, which are now added to the already known dicraeosaurids and a recently published basal diplodocoid. These forms substantially increase the knowledge on the Early Cretaceous sauropod diversity in Gondwana. 相似文献
Devonian sediments of the Malaguide Complex potentially could include the Frasnian–Famennian boundary, one of the five greatest Phanerozoic biotic crises. Conodont biofacies and microfacies of carbonate clasts from a pebbly mudstone underlying Tournaisian radiolarites allows identification, for the first time in the Malaguide Complex, of Devonian shallow marine environments laterally grading to deeper realms. The clasts yielded Frasnian conodont associations of the falsiovalis to rhenana biozones, with six biofacies that reveal different environmental conditions in their source areas. Source sediments were dismantled and redeposited within the pebbly mudstone, whose origin is tentatively related to one of the events that are associated worldwide with the Frasnian–Famennian crisis. The latter is recorded, in two equivalent Malaguide pelagic successions, by stratigraphic discontinuities, and it was, probably, tectonically and/or eustatically controlled, as in other Alpine‐Mediterranean Paleotethyan margins. 相似文献
The southeast area of the Argentine Pampas is characterized by the presence of an unconfined aquifer in a wide plain. A methodology is proposed that deals with the aquifer vulnerability where the homogeneity of the hydrogeological variables used by traditional methods (in this case, DRASTIC-P) causes vulnerability maps to show more than 80% of the territory under the same class. This absence of discrimination renders vulnerability maps of little use to decision-makers. In addition, the proposed methodology avoids the traditional vague classification (high, low, and moderate vulnerability) which is highly dependent on subjectivity in its association of each class with hydrogeological considerations. That traditional vulnerability assessment methodology was adapted using a geographic information system to reclassify classes, based on the Natural Breaks (Jenks) method. The pixel-to-pixel comparison between the result obtained by the DRASTIC-P and the reclassified classes generates the so-called operational vulnerability index (OVI), which shows four classes, associating each with different hydrogeological requirements to make decisions. 相似文献
Floods are natural processes that constitute a hazard to society when associated to improper land use. Anthropic activities in floodplains are a factor of vulnerability that converts a natural hazard into a threat factor, eventually leading to disaster. Nowadays, natural and social complex processes demand integrated assessments in order to improve their understanding, helping decision making over sustainable use of territory, as well as integrating society’s activity in ecosystems and potentials, restrictions and benefits that society obtain from them. In this context, the objective of this work was to build a composite vulnerability model for a floodplain under urban influence, using an integrated assessment approach. This model was based on three dimensions; threat, fragility and an ecosystem services provision. These dimensions were calculated using both primary and secondary information, and weights by specialists. Main results show that the area presents high vulnerability with an increasing gradient towards high and urbanized areas, associated with an important number and relevant ecosystem services. Also, a spatial heterogeneity of the three dimensions emerged, making evident this area’s complexity and the need of integrated assessments to approach it. The composite vulnerability model proposed presents an elevated potential for natural and social processes analysis in floodplains, which is crucial for these territory management. Moreover, these integrated dimensions could contribute to decision making in different levels, as well as generating important supplies for environmental management and land planning.
The Genç District is located on the Bingöl Seismic Gap (BSG) of the Eastern Anatolian Fault Zone (EAFZ) with its?~?34.000 residents. The Karl?ova Triple Junction, where the EAFZ, the North Anatolian Fault Zone, and the Varto Fault Zone meet, is only 80 km NE of the Genç District. To make an earthquake disaster damage prediction of the Genç District, carrying a high risk of disaster, we have (1) prepared a new geological map, and (2) conducted a single-station microtremor survey. We defined that three SW-NE trending active faults of the sinistral Genç Fault Zone are cutting through the District. We have obtained dominant period (T) as?<?0.2 s, the amplification factor (A) between 8 and 10, the average shear wave velocity for the first 30 m (Vs30) as?<?300 m/s, and the seismic vulnerability index (Kg) as?>?20, in the central part of the Genç District. We have also prepared damage prediction maps for three bedrock acceleration values (0.25, 0.50, 0.75 g). Our earthquake damage prediction scenarios evidenced that as the bedrock acceleration values increase, the area of soil plastic behavior expands linearly. Here we report that if the average expected peak ground acceleration value (0.55–0.625 g) is exceeded during an earthquake, significant damage would be inevitable for the central part of the Genç District where most of the schools, mosques, public buildings, and hospitals are settled-down.
Geochemistry and environmental tracers were used to understand groundwater resources, recharge processes, and potential sources of contamination in the Rio Actopan Basin, Veracruz State, Mexico. Total dissolved solids are lower in wells and springs located in the basin uplands compared with those closer to the coast, likely associated with rock/water interaction. Geochemical results also indicate some saltwater intrusion near the coast and increased nitrate near urban centers. Stable isotopes show that precipitation is the source of recharge to the groundwater system. Interestingly, some high-elevation springs are more isotopically enriched than average annual precipitation at higher elevations, indicating preferential recharge during the drier but cooler winter months when evapotranspiration is reduced. In contrast, groundwater below 1,200 m elevation is more isotopically depleted than average precipitation, indicating recharge occurring at much higher elevation than the sampling site. Relatively cool recharge temperatures, derived from noble gas measurements at four sites (11–20 °C), also suggest higher elevation recharge. Environmental tracers indicate that groundwater residence time in the basin ranges from 12,000 years to modern. While this large range shows varying groundwater flowpaths and travel times, ages using different tracer methods (14C, 3H/3He, CFCs) were generally consistent. Comparing multiple tracers such as CFC-12 with CFC-113 indicates piston-flow to some discharge points, yet binary mixing of young and older groundwater at other points. In summary, groundwater within the Rio Actopan Basin watershed is relatively young (Holocene) and the majority of recharge occurs in the basin uplands and moves towards the coast. 相似文献