首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
地球物理   16篇
地质学   9篇
海洋学   28篇
自然地理   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2006年   4篇
  2005年   1篇
  2004年   7篇
  2003年   2篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1980年   1篇
  1978年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
41.
Hydrographic casts down to the bottom along two zonal sections at 12°N and 13°N (from 144°E to 127°E) were made with a CTD. Their analysis verified the existence of cold and saline abyssal water between the Mariana Ridge and the Kyushu-Palau Ridge. This result provides evidence of flow into the Philippine Sea through the deep gap called the Yap-Mariana Junction. The properties of deep water are variable in the West Mariana basin but quite homogeneous in the Philippine Basin, indicating the transitional nature in the West Mariana Basin and the existence of older bottom water in the Philippine Basin. A close examination suggests that the bottom water is slightly colder in the western part of the Philippine Basin than in the eastern part of the basin. This slightly colder deep water with a hundred kilometer scale in the western Philippine Basin might be related to a broad western boundary current flowing equatorward along the eastern rise of the Philippine Trench.  相似文献   
42.
The sudden intrusion of Kuroshio warm water into the Bungo Channel (kyucho) occurs mainly at neap tides during summer, suggesting that tidal mixing is one of the essential factors regulating kyucho. In order to clarify the physical mechanisms responsible for the regulation of kyucho, we carry out non-hydrostatic three-dimensional numerical experiments allowing Kuroshio warm water to intrude into a strong tidal mixing region. It is shown that the Kuroshio warm water can (or cannot) pass through the tidal mixing regions off the east coast of the Bungo Channel during neap (or spring) tides. The analysis of the dynamic balance off the east coast of the Bungo Channel shows that tidal residual currents generated by tidal flow interaction with complicated land configurations off the east coast of the Bungo Channel can also play an important role in regulating kyucho. In order to assess separately the effects of tidal mixing and tidal residual currents on kyucho, we incorporate the parameterized vertical mixing and tidal stresses into the numerical model instead of tidal currents. It is demonstrated that tidal mixing cannot by itself block the northward intrusion of Kuroshio warm water, and that an additional effect induced by tidal residual eddies equivalent to horizontal mixing is needed to regulate kyucho. This strongly suggests that the basin–ocean water exchange processes in areas with complicated land configurations can only be reproduced by taking into account the effects of tidal residual eddies on a 1-km scale in addition to tidal mixing effects evaluated by microstructure measurements.  相似文献   
43.
A set of simultaneous long-term, deep current measurements was taken using a moored array in the mid-ocean of the western North Pacific near 30°N, 146°E. Five current meters at three stations provided good quality records over 84 days. Low-frequency current fluctuations with meridional dominance are clearly seen in the deep layer records. They are consistent with signals of a mesoscale current fluctuation which has a period of about 100 days, an east-west wave length of about 200 km, and a westward phase propagation with a speed of about 2 cm sec–1. Bottom intensification of the east component of low-frequency current fluctuations is also observed.  相似文献   
44.
The heat balance of the surface layer in the vicinity of the former Ocean Weather Station “Tango” (OWS-T; 29°N, 135°E), where a large amount of heat is transported by the Kuroshio and transferred to the atmosphere, was studied by during Ocean Mixed Layer Experiment (OMLET) as an oceanographic component of the Japanese World Climate Research Program (1987–1991). Temperature and velocity in the upper ocean measured using a surface moored buoy system deployed by the Ocean Research Institute, the University of Tokyo, in total 668 days of four time series namely the periods of April 1988–November 1988 (OMELET-88), August 1989–February 1990 (OMLET-89), April 1990–September 1990 (OMLET-901) and September 1990–January 1991 (OMLET-902). We have analyzed the moored buoy data of the upper 100 m for the latter three time series (OMLET-89, -901 and -902) and here we discuss the heat balance of the upper 100 m, in combination with surface heat flux and oceanographic data provided by the Japan Meteorological Agency. A large fluctuation of oceanic heat convergence/divergence of 200–300 W/m2 in amplitude with predominant period of 20–30 days occurred in the first half of OMLET-89 period, which was just the early stage in the formation process of a large meander path of the Kuroshio. A large amount of heat convergence of 71 and 79 W/m2 on average was detected in observation period of OMLET-89 and -901, respectively. During OMLET-902, relatively small heat convergence of 13 W/m2 was obtained. It is suggested that these variations of oceanic heat convergence in this region were closely related to the fluctuation of the Kuroshio axis to the south of Japan. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
45.
Mooring observation of current and temperature was made at 17.8 m layer of 19 m depth about 8 km east to Kuala Terengganu, Peninsular Malaysia. Harmonic analysis was applied to tidal currents for 30 days in September 1993, and to the tides observed at Chendering. The K1 tide was the largest both in tidal currents and the tides. Daily mean temperature, currents, sea level, and winds were analyzed from September 1993 to May 1994. Northeast Monsoon from December to February caused sea level rise of 50 cm and temperature lowering of 1°C.  相似文献   
46.
The path of the Kuroshio in Sagami Bay was surveyed through drifter tracking from Oshima-West Channel to Oshima-East Channel. A subsurface drifter with a drogue at 300 m depth flowed around Oshima from Oshima-West Channel to Oshima-East Channel. A difference in flow directions between the upper and lower layers was apparent in the northwest of Oshima. Flow directions there were shown to change from north in the surface layer to east in the bottom layer, and this was confirmed with moored currentmeters.A profile of northward current velocity was estimated from measurements in six layers with currentmeters deployed in the Oshima-West Channel. The profile shows a core of northward flow along the eastern bottom slope and a weak southward flow along the western bottom slope. Volume transport of the Kuroshio into Sagami Bay was estimated to be 1.8×106m3sec–1 from the profile.Long-term current measurement showed that southward flows were observed in Oshima-West Channel in July 1977, May 1978 and April 1979. Cold or warm water masses appearing south of the Izu Peninsula are suggested to have caused the changes.Displacement of the cold water mass in July 1977 is discussed on the basis of current measurements and offshore oceanographic conditions.  相似文献   
47.
Masaaki  Okuda  Hiroomi  Nakazato  Norio  Miyoshi  Takeshi  Nakagawa  Hiroko  Okazaki  Saneatsu  Saito  Asahiko  Taira 《Island Arc》2006,15(3):338-354
Abstract   The 250-m Choshi core (CHOSHI-1), drilled from hemipelagic muds of the Inubo Group, has been physically, geochemically and tephrochronologically analyzed back to 1 Ma. We provide pollen results for the 19–169 m section of the core (400–780 ka) bracketed by the marker tephra Ty1 (equivalent to J4) and the Brunhes–Matuyama paleomagnetic boundary. The results show good agreement with the corresponding oxygen isotope (δ18O) profile, with high δ18O intervals dominated by boreal conifers Picea , Abies , Pinus (subgen. Haploxylon ) and Tsuga ( diversifolia ), whereas low δ18O intervals are dominated by temperate conifers Cryptomeria , Taxaceae-Cephalotaxaceae-Cupressaceae and Sciadopitys . In order to confirm pollen-climate relations for the relevant taxa, a modern surface pollen dataset for the Japanese archipelago was consulted. In this analysis, the ratios of Cryptomeria / Picea and temperate/boreal conifers serve as proxies for the 100-kyr glacial/interglacial cycle during the Middle Pleistocene. Distinct signals for marine isotope stages (MIS) 11, 12, 13–15, 16, 17 and 18–19 are recognized in accordance with the tephrochronology and δ18O of the same core. Application of the criteria to an independent pollen record from Lake Biwa provides an integrated pollen stratigraphy for mid-latitude Japan during the past 800 ky. Some degree of uncertainty remains in the chronology of the MIS13–15 interval, relating to the uncertainty in the eruption age of widespread tephra Ks11.  相似文献   
48.
A seismic refraction–reflection experiment using ocean bottom seismometers and a tuned airgun array was conducted around the Solomon Island Arc to investigate the fate of an oceanic plateau adjacent to a subduction zone. Here, the Ontong Java Plateau is converging from north with the Solomon Island Arc as part of the Pacific Plate. According to our two-dimensional P-wave velocity structure modeling, the thickness of the Ontong Java Plateau is about 33 km including a thick (15 km) high-velocity layer (7.2 km/s). The thick crust of the Ontong Java Plateau still persists below the Malaita Accreted Province. We interpreted that the shallow part of the Ontong Java Plateau is accreted in front of the Solomon Island Arc as the Malaita Accreted Province and the North Solomon Trench are not a subduction zone but a deformation front of accreted materials. The subduction of the India–Australia Plate from the south at the San Cristobal Trench is confirmed to a depth of about 20 km below sea level. Seismicity around our survey area shows shallow (about 50 km) hypocenters from the San Cristobal Trench and deep (about 200 km) hypocenters from the other side of the Solomon Island Arc. No earthquakes occurred around the North Solomon Trench. The deep seismicity and our velocity model suggest that the lower part of the Ontong Java Plateau is subducting. After the oceanic plateau closes in on the arc, the upper part of the oceanic plateau is accreted with the arc and the lower part is subducted below the arc. The estimation of crustal bulk composition from the velocity model indicates that the upper portion and the total of the Solomon Island Arc are SiO2 58% and 53%, respectively, which is almost same as that of the Izu–Bonin Arc. This means that the Solomon Island Arc can be a contributor to growing continental crust. The bulk composition of the Ontong Java Plateau is SiO2 49–50%, which is meaningfully lower than those of continents. The accreted province in front of the arc is growing with the convergence of the two plates, and this accretion of the upper part of the oceanic plateau may be another process of crustal growth, although the proportion of such contribution is not clear.  相似文献   
49.
Abstract Seismic reflections across the accretionary prism of the North Sulawesi provide excellent images of the various structural domains landward of the frontal thrust. The structural domain in the accretionary prism area of the North Sulawesi Trench can be divided into four zones: (i) trench area; (ii) Zone A; (iii) Zone B; and (iv) Zone C. Zone A is an active imbrication zone where a decollement is well imaged. Zone B is dominated by out‐of‐sequence thrusts and small slope basins. Zone C is structurally high in the forearc basin, overlain by a thick sedimentary sequence. The subducted and accreted sedimentary packages are separated by the decollement. Topography of the oceanic basement is rough, both in the basin and beneath the wedge. The accretionary prism along the North Sulawesi Trench grew because of the collision between eastern Sulawesi and the Bangai–Sula microcontinent along the Sorong Fault in the middle Miocene. This collision produced a large rotation of the north arm of Sulawesi Island. Rotation and northward movement of the north arm of Sulawesi may have resulted in southward subduction and development of the accretionary wedge along North Sulawesi. Lateral variations are wider in the western areas relative to the eastern areas. This is due to greater convergence rates in the western area: 5 km/My for the west and 1.5 km/My for the east. An accretionary prism model indicates that the initiation of growth of the accretionary prism in the North Sulawesi Trench occurred approximately 5 Ma. A comparison between the North Sulawesi accretionary prism and the Nankai accretionary prism of Japan reveals similar internal structures, suggesting similar mechanical processes and structural evolution.  相似文献   
50.
We discuss several models of the evolution of the trench-trench-trench triple junction off central Honshu during the past 1 m.y. on the basis of plate kinematics, morphology, gravity and seismic reflection profile data available for the area. The study area is characterized by large basins, 7–8 km deep on the inner lower trench slope on the Philippine Sea side and the deep (9 km) Izu-Bonin Trench to the east. Between the basins and the trench, there are 6–7 km-deep basement highs. The triple junction is unstable due to the movement of the Philippine Sea plate at a velocity of 3 cm/yr in WNW direction with respect to Eurasia (Northeast Japan), subparallel to the strike of the Sagami Trough. Generally we can expect the boundary area between the Philippine Sea and Pacific plates to be extended because the Pacific plate is unlikely to follow the retreating Philippine Sea plate due to the obstruction of the southeastern corner of Eurasia. The above peculiar morphology of the junction area could have resulted from this lack of stability. However, there are several possible ways to explain the above morphology.

Our gravity model across the trench-basement high-basin area shows that the basement highs are made of low-density materials (1.8–2 g/cm3). Thus we reject the mantle diapir model which proposes that the basement highs have been formed by diapiric injection of serpentinites between the retreating Philippine Sea plate and the Pacific plate.

The stretched basin model proposes that the basins have been formed by stretching of the Philippine Sea plate wedge. We estimated the extension to be about 10 km at the largest basin. We reconstructed the morphology at 1 Ma by moving the Philippine Sea plate 20 km farther to the east after closing the basins, and thus obtained 8 km depth of the 1 Ma trench, which is similar to that of the present Japan Trench to the north. Although this stretched basin model can explain the formation of the basins and the deep trench, other models are equally possible. For instance, the eduction model explains the origin of the basin by the eduction of the Philippine Sea basement from beneath the basement high, while the accretion model explains the basement highs by the accretion of the Izu-Bonin trench wedge sediments. In both of these models we can reconstruct the 1 Ma trench depth as about 8 km, similar to that of the stretched basin model.

The deformation of the basement of the basins constitutes the best criterion to differentiate between these models. The multi-channel seismic reflection profiles show that the basement of the largest basin is cut by normal faults, in particular at its eastern edge. This suggests that the stretched basin model is most likely. However, the upper part of the sediments shows that the basement high to the east has been recently uplifted. This uplift is probably due to the recent (0.5 Ma) start of accretion of the trench wedge sediments beneath this basement high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号